
ARTICLE

Received 7 Aug 2016 | Accepted 21 Dec 2016 | Published 23 Feb 2017

Compiler-aided systematic construction
of large-scale DNA strand displacement circuits
using unpurified components
Anupama J. Thubagere1, Chris Thachuk2, Joseph Berleant2, Robert F. Johnson1, Diana A. Ardelean3,

Kevin M. Cherry1 & Lulu Qian1,2

Biochemical circuits made of rationally designed DNA molecules are proofs of concept for

embedding control within complex molecular environments. They hold promise for trans-

forming the current technologies in chemistry, biology, medicine and material science by

introducing programmable and responsive behaviour to diverse molecular systems. As the

transformative power of a technology depends on its accessibility, two main challenges are an

automated design process and simple experimental procedures. Here we demonstrate the

use of circuit design software, combined with the use of unpurified strands and simplified

experimental procedures, for creating a complex DNA strand displacement circuit that

consists of 78 distinct species. We develop a systematic procedure for overcoming the

challenges involved in using unpurified DNA strands. We also develop a model that takes

synthesis errors into consideration and semi-quantitatively reproduces the experimental data.

Our methods now enable even novice researchers to successfully design and construct

complex DNA strand displacement circuits.

DOI: 10.1038/ncomms14373 OPEN

1 Bioengineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. 2 Computer Science, California Institute of
Technology, 1200 East California Boulevard, Pasadena, California 91125, USA. 3 Applied and Computational Mathematics, California Institute of Technology, 1200
East California Boulevard, Pasadena, California 91125, USA. Correspondence and requests for materials should be addressed to L.Q. (email: luluqian@caltech.edu).

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 1

mailto:luluqian@caltech.edu
http://www.nature.com/naturecommunications

T
he success of computer engineering has inspired attempts
to use hierarchical and systematic approaches for devel-
oping molecular devices with increasing complexity. To

enable the design and construction of a wide range of functional
molecular systems, we need software tools such as a compiler that
can automatically translate high-level functions to low-level
molecular implementations and provide models and simulations
for predicting and debugging the behaviours of designed
molecular systems. The mechanism of DNA strand displacement
has been used to create a variety of synthetic molecular systems
including circuits, motors and triggered assembly of structures1.
Software tools have been developed for designing and analysing
DNA strand displacement systems, capable of generating nucleic
acid sequences from well-defined structures and molecular
interactions2,3, calculating the thermodynamic2,4,5 and kinetic6

properties of designed molecules, and evaluating if the behaviours
of the molecular systems agree with the higher-level designs3,7–11.
There also exist a few molecular compilers that can translate
abstract functions such as a logic function to DNA strand
displacement implementations without requiring an under-
standing of the molecular level details12,13. However, there
has been little independent experimental validation of these
compilers, most of which were developed in parallel with or after
experimental findings12,14.

In addition to software tools that facilitate automated design
and analysis of DNA strand displacement circuits, we also need to
simplify the experimental procedures for creating these circuits
in vitro, so that it is possible for researchers with diverse
backgrounds to build their own circuits and explore potential
applications. A great inspiration is DNA origami15, a technique
that folds DNA into sophisticated structures. In just 10 years
since its birth, DNA origami has become one of the most
significant successes in the field of DNA nanotechnology.
Over 170 research groups have contributed to advancing this
technique or developing it for applications in a variety of
research areas16–19. A fundamental reason why DNA origami
was able to quickly spread around the world is that the
experimental procedure is extremely simple and makes use of
cheap, unpurified nucleic-acid strands. In contrast, other
than a few very simple circuits with just one or two double-
stranded components20, most DNA strand displacement circuits
were constructed using strands that were purchased either
purified or unpurified, but all followed by in-house
polyacrylamide gel electrophoresis (PAGE) purification to
reduce undesired products due to synthesis errors and
stoichiometry errors12,14,21. Purified strands are approximately
ten times more expensive than unpurified strands, which
significantly increases the cost for building large-scale DNA
circuits. In-house PAGE purification is both time consuming and
labour intensive.

In this work, we show that one can successfully build
a complex DNA strand displacement circuit, using DNA
sequences automatically generated from a molecular compiler.
We also show that one can even do so using cheap, unpurified
DNA strands, following simple and systematic experimental
procedures.

Results
Circuit design. A simple DNA strand displacement motif called
the seesaw gate was developed to scale up the complexity of
DNA circuits22 and was used to demonstrate digital logic
computation12 and neural network computation23. The Seesaw
Compiler12,24 was developed to automatically translate an
arbitrary feed forward digital logic circuit into its equivalent
seesaw DNA circuit (Fig. 1). The compiler takes an input file that

describes a logic circuit with a list of input and output terminals,
and a list of AND, OR, NOT, NAND and NOR gates with the
connectivity of their terminals specified. First, a technique called
dual-rail logic is applied to translate the original logic circuit into
an equivalent circuit that contains AND and OR gates only25.
This is because the NOT gate cannot be directly implemented in
multi-layer use-once DNA circuits, if the OFF and ON state of a
signal is represented by low and high concentration of a single
DNA strand, respectively. If a NOT gate were implemented this
way, then output molecules of the gate could be immediately
produced in the absence of input. However, once this reaction
reaches equilibrium it cannot be reversed, even if input mole-
cules are added at a later point. With dual-rail logic, each terminal
in the original circuit is replaced by two terminals, representing
the OFF and ON states of a signal separately (for example,
each input signal xi is replaced by x0

i and x1
i). Thus, no reaction

will take place until signal molecules on one of the two wires
have arrived. With this representation, the NOT gate
can be implemented by exchanging the two wires of an
input and output signal. Each AND, OR, NAND and NOR
gate in the original circuit is replaced by a pair of AND and OR
gates.

Next, the compiler translates the dual-rail logic circuit into an
equivalent seesaw DNA circuit. In a seesaw DNA circuit, each
signal is defined as a wire wj,i connecting seesaw nodes j and i,
and implemented using a single-stranded DNA molecule.
Each AND and OR gate in the dual-rail circuit is replaced by a
seesaw AND and OR gate, respectively, which is defined as a
pair of integrating and amplifying seesaw nodes connected with a
set of input and output wires12. The seesaw nodes are
composed of double-stranded threshold and gate:output
molecules and single-stranded fuel molecules (Fig. 1, bottom
right). We will explain how the seesaw logic gates work in the
next section. Input fan-out gates are introduced to take an input
signal that is used for multiple logic gates and produce the
corresponding number of output signals. Reporters are
introduced to take each output signal and generate a distinct
fluorescence signal for readout.

Finally, the compiler generates Visual DSD3,26 code and
Mathematica code for simulating and analysing the seesaw DNA
circuit and a file that contains DNA sequences for all molecular
species in the circuit. The Visual DSD code can be used to
automatically produce diagrams of species, reactions and network
graphs with domain-level representation of DNA and to simulate
the circuit behaviour based on the network of chemical reactions.
The Mathematica code provides more customized and efficient
simulations of seesaw circuits. The simulation uses the
CRNSimulator package27 and models a specific set of side
reactions in addition to the designed reactions in a seesaw
network12.

As a demonstration of using the Seesaw Compiler, we
designed a single DNA strand displacement circuit that
implements two distinct elementary cellular automata
transition functions. An elementary cellular automaton (CA) is
one of the simplest models of computation28. It consists of a
one-dimensional grid of cells, collectively called a generation,
where each cell has a binary state of 0 or 1. In each subsequent
generation, the state for a cell C is determined by its current
state and those of its left neighbour L and right neighbour
R. A state transition rule maps each of the 23¼ 8 possible
combinations of states for L, C and R to either 0 or 1.
Thus, a length 8 binary string uniquely identifies one of the 28

possible transition functions that specify how an elementary
CA will evolve between generations. The rule 110 elementary CA
(binary number 01101110 written in decimal) is famously known
to be Turing universal29.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

2 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

Another rule that is equally powerful is rule 124 (binary
number 01111100 written in decimal), generated by applying the
following mirror transformation: the new state of the centre cell
for LCR¼ zyx in rule 124 is the same as the new state for
LCR¼ xyz in rule 110. Our circuit was designed to compute a
combined logic function of the two transition rules (Fig. 2a). It
consists of five logic gates in two layers, including a three-input
two-output NAND gate. It is noteworthy that we designed the

circuit to demonstrate an interesting logic function associated
with cellular automata and not to implement the actual cellular
automata model. The circuit operates in a well-mixed test tube
environment that does not involve spatial dynamics (that is, no
geometry of cells).

The DNA circuit generated by the Seesaw Compiler consisted
of 6 layers and a total of 78 distinct initial DNA species (Fig. 2b
and Supplementary Fig. 1). Mathematica simulations of the DNA

INPUT(1) # x1
INPUT(2) # x2
INPUT(3) # x3
INPUT(4) # x4

OUTPUT(11) # y1
OUTPUT(8) # y2

5 = NOR(1, 2)
6 = NOT(4)
7 = AND(3, 6)
8 = OR(3, 4)
9 = NAND(5, 3, 4)
10 = OR(5, 7)
11 = NAND(9, 10)

Feedforward logic circuit

INPUT(2) # x1^0
INPUT(3) # x1^1

OUTPUT(22) # y1^0
OUTPUT(23) # y1^1

10 = OR(3, 5)
11 = AND(2, 4)
14 = OR(6, 9)
15 = AND(7, 8)
16 = AND(6, 8)
17 = OR(7, 9)
18 = AND(11, 7, 9)
19 = OR(10, 6, 8)

INPUT(2) = w[5,22] # x1^0
INPUT(3) = w[7,20] # x1^1

OUTPUT(22) = Fluor[52] # y1^0
OUTPUT(23) = Fluor[54] # y1^1

inputfanout[13,12,{28,32,38}]
inputfanout[15,14,{30,34,36}]

seesawOR[20,21,{7,11},{38,40}]
seesawAND[22,23,{5,9},{36,42}]
seesawOR[28,29,{13,19},{40}]
seesawAND[30,31,{15,17},{42}]

Reporter[52,45]
Reporter[54,47]

Seesaw DNA circuit

directive plot <_ _ _ Fluor52> (* y1^0 *)
directive plot <_ _ _ Fluor54> (* y1^1 *)

def normal = 0.0003 (* normal toehold binding rate constant nM^-1 s^-1*)
def slow = 0.000015 (* slow toehold binding rate constant nM^-1 s^-1*)

(* a seesaw signal *)
def signal(N,iL,i,iR,jL,j,jR) = (N * <iL^ iiR^ T^ jL^ j jR^>)

(* 2-input 2-output seesaw OR gate *)
def seesawOR2I2O(i1L,i1,i1R,i2L,i2,i2R,k1L,k1,k1R,k2L,k2,k2R) =
(gateL(20*N,i1L,i1,i1R,i2L,i2,i2R)
| thresholdL(6*N,i1R,i2L,i2,i2R)
| gateL(10*N,i2L,i2,i2R,k1L,k1,k1R)
| gateL(10*N,i2L,i2,i2R,k2L,k2,k2R)
| signal(40*N,i2L,i2,i2R,fL,f,fR))

(signal(ON,S5L,S5,S5R,S22L,S22,S22R) (* x1^0 *)
| signal(OFF,S7L,S7,S7R,S20L,S20,S20R) (* x1^1 *)

| seesawOR2I2O(S20L,S20,S20R,S21L,S21,S21R,S38L,S38,S38R,S40L,S40,S40R)
| seesawAND2I2O(S22L,S22,S22R,S23L,S23,S23R,S36L,S36,S36R,S42L,S42,S42R)

Visual DSD code

(* Rate constants: *)
kf = 2*10^6; (* fast strand displacement rate, unit: M^–1 s^–1 *)
ks = 5*10^4; (* slow strand displacement rate, unit: M^–1 s^–1 *)

(* Translates a seesaw gate into a list of reactions: *)
seesaw[x_,l_List,r_List]:={
(* Toehold exchange reactions *)
Outer[revrxn[w[#1,x]+g[x,w[x,#2]],g[w[#1,x],x]+w[x,#2],ks,ks]&,l,r],

(* Translates logic OR operation into a list of seesaw gates *)
seesawOR[x1_,x2_,l_List,r_List]:=Module[{f},
{seesaw[x1,l,{x2}],

(* Simulation *)
SIMcircuit=Table[gatesys={
seesawOR[20,21,{7,11},{38,40}],
seesawAND[22,23,{5,9},{36,42}],

(* Plot *)
Plot[Evaluate[SIMcircuit],{t,0,time},

Mathematica code

x1^0: w5,22 = S22 T S5

x1^1: w7,20 = S20 T S7

Th12,13:13-t = S13

Th12,13:13-b = s12* T* S13*

w13,28 = S28 T S13

w13,32 = S32 T S13

G13-b = T* S13* T*

w13,f = Sf T S13

Rep48-t = RQ S48

Rep48-b = T* S48* ATTO590

DNA sequences

Visual DSD simulation

Mathematica simulation

+

+

+

+

53

f

5

2

1

6

Gate:Output (G5:5,6)

Fuel (w5,f)

Reporter (Rep6)Input (w53,5)

Threshold (Th53,5:5)

S41L S41 S41R

S41L* S41* S41R*T*S40R*

S41L S41 S41RTS40RS40S40L

↓

S41L S41 S41R

S41L S41 S41RTS40RS40S40L

S41L* S41* S41R*T*S40R*

S41L S41 S41R S42L S42 S42RT

S41L* S41* S41R*T* T*

S41L S41 S41RTS40RS40S40L

S41L S41 S41R S42L S42 S42RT

S41L* S41* S41R*T* T*

S41L S41 S41RTS40RS40S40L

Dual-rail logic circuit

1.0

y2
0

y2
1

y1
0

y1
1

x4 x3 x2 x1 = 1001

0.8

0.6

0.4

0.2

0.0

0 2 4 6 8 10
Time (hours)

O
ut

pu
t

S5

S5

S5
Sf

S5 T
S5*s53* T*

S6
Q
F

S53

S5*T*

S6*T*

T*

S6

T

T

–0.5 –1.5
1

S5 =
S7 =
S9 =

S5* =
S7* =
S9* =

Figure 1 | Automated circuit design steps using the Seesaw Compiler. A feedforward digital logic circuit is first translated into an equivalent dual-rail logic

circuit and then translated into an equivalent seesaw DNA circuit. Visual DSD code and Mathematica code are generated for analysing and simulating the

seesaw DNA circuit, and DNA sequences are generated for constructing the circuit. Bottom right diagram introduces the notations of seesaw circuits: black

numbers indicate identities of nodes. The locations and values of red numbers indicate the identities of distinct DNA species and their relative initial

concentrations, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373 ARTICLE

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications

circuit predicted correct computation for all 8 possible input
combinations under ideal experimental conditions (Fig. 2c).

The next step was to construct the DNA circuit using
strands that were purchased unpurified and with no additional
in-house purification. We expected that the main challenges
would be to understand how synthesis errors and stoichiometry
errors affect the behaviours of DNA circuits and to
explore solutions that restore the desired circuit behaviour.
We took a bottom-up approach and began building the DNA
circuit from the simplest functional component—digital signal
restoration.

Calibrating effective concentrations. Digital signal restoration is
a process that pushes the intrinsically analog signal towards either
the ideal ON or OFF state, therefore cleaning up the noise and

compensating for the signal decay that occurs during circuit
execution. In seesaw circuits, digital signal restoration is a
component of every logic gate, and is implemented by an
amplifying seesaw node with the following idealized input-output
function:

y¼ 1 x4th
0 x� th

�
ð1Þ

At the molecular level, the digital signal restoration process
consists of two basic reactions: catalysis and thresholding.
Catalysis is implemented with two toehold exchange pathways
that release free output strands wi,k from double-stranded gate
molecules Gi:i,k, using the input strands wj,i as a catalyst (Supple-
mentary Fig. 2a):

wj;iþG ks
i:i;k�!wj;iþwi;k ð2Þ

LCR = 100

LCR = 001

LCR = 101 LCR = 110 LCR = 111

0 0 0 0 0

0 0 1 0 1

0 1 0 1 1

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

1 1 0 1 1

1 1 1

LCR = 000

0 0

Rule 110 Rule 124

LCR = 010 LCR = 011

L

C

R

L C R

L0

L1

C 0

C 1

R 0

R 1

R1240

R1241

R1101

R1100

R124

R124

R110

R110

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

1.0

0.8
0.6

0.4

0.2

0.0
0 2 4 6 8 10

Time (h)

O
ut

pu
t

R1240

R1241

R1100

R1101

a b

c

Figure 2 | Design of a rule 110–124 circuit using the Seesaw Compiler. (a) Gate diagram and truth table of a digital logic circuit that computes the

transition rules 110 and 124 of elementary cellular automata. (b) Seesaw gate diagram of the equivalent DNA strand displacement circuit. Each seesaw

node connected to a dual-rail input implements input fan-out. Each pair of seesaw nodes labelled 4 and 3 implements a dual-rail AND and OR gate,

respectively. Each pair of dual-rail AND and OR gates implements an AND, OR or NAND gate in the original logic circuit. Each dual-rail output is converted

to a fluorescence signal through a reporter, indicated as a half node with a zigzag arrow. Each circle and dot inside a seesaw node indicates a double-

stranded threshold and gate molecule, respectively. Each dot on a wire indicates a single-stranded fuel molecule. (c) Simulations of the DNA strand

displacement circuit using the previously developed model for purified seesaw circuits. Trajectories and their corresponding outputs have matching colours.

Overlapping trajectories were shifted to be visible. Dotted and solid lines indicate dual-rail outputs that represent logic OFF and ON, respectively. For

example, when input LCR¼001, meaning L0, C0 and R1 were introduced at a high concentration and L1, C1 and R0 at a low concentration, two output

trajectories R1240 and R1101 reached an ON state and the other two output trajectories R1241 and R1100 remained in an OFF state, indicating that the output

was computed to be 0 and 1 for rule 124 and 110, respectively. Simulations were performed at 1� ¼ 50 nM—the compiler recommended standard

concentration for large-scale purified seesaw circuits.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

4 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

Catalysis can be used for signal amplification, since a small
amount of input can trigger the release of a much larger amount
of output.

Thresholding is implemented with double-stranded threshold
molecules Thj,i:i consuming the input at a much faster rate
(kfcks) than the input acting as a catalyst (Supplementary
Fig. 2b):

wj;iþThj;i:i
kf�!+ ð3Þ

As shown in simulations generated using the Seesaw
Compiler (Fig. 3a), when the concentration of the
threshold molecule is 0.5� (where 1� is a standard
concentration of 100 nM), we expect that input less
than the threshold (for example, 0.3�) should be cleaned
up to an ideal OFF state via reaction 3 and input greater
than the threshold (for example, 0.7�) should be amplified
to an ideal ON state via reaction 2. However, the
observed circuit behaviour was different: when input¼ 0.7� ,
the output signal was higher than an ideal OFF state, but
did not reach an ideal ON state (Fig. 3b). This experimental
result suggested that the input did not sufficiently exceed
the threshold, which was an indication that the effective
concentration of an unpurified threshold species, compared
with that of an unpurified signal species, was higher than
expected.

The nominal concentration of a DNA species can be
measured using ultraviolet absorbance, but it can be higher
than the effective concentration, which is the concentration of
the DNA species actually performing the desired reactions. If
the sequences of the DNA strands are properly designed, the
difference between nominal concentration and effective con-
centration is typically caused by synthesis errors including
nucleotide insertion, deletion and mismatch. To calibrate the
effective concentrations of unpurified DNA molecules, we
defined the following ratio between effective (eff) and nominal
(nom) concentrations of an arbitrary signal, threshold and gate

species:

aj;i¼
wj;i
� �

eff

wj;i
� �

nom

ð4Þ

bj;i¼
Thj;i:i
� �

eff

Thj;i:i
� �

nom

ð5Þ

gi;k¼
Gi:i;k
� �

eff

Gi:i;k
� �

nom

ð6Þ

The effective to nominal concentration of a DNA species
cannot be measured in isolation. More importantly, the absolute
values of a, b and g should only affect the speed but not the
correctness of computation, if the values remain comparable to
each other. Thus, we chose to estimate the ratio between b and a
for a threshold consuming a signal, by comparing simulation
with experimental result of a signal restoration circuit. For
example, manipulating the threshold value in simulation (sim)
identified that Th53;5:5

� �
sim¼0:7� agreed with the experimental

data (Fig. 3c), which means the effective concentration of the
threshold was similar to that of the signal for Th53;5:5

� �
nom¼0:5�

and w53;5
� �

nom¼0:7�. Thus, the threshold to signal ratio can be
calculated as:

b53;5

a53;5
¼

Th53;5:5
� �

eff

Th53;5:5
� �

nom

�
w53;5
� �

nom

w53;5
� �

eff

¼
w53;5
� �

nom

Th53;5:5
� �

nom

�����
Th53;5:5½ �eff

¼ w53;5½ �eff

¼ 0:7
0:5
¼1:4 ð7Þ

A possible explanation for an unpurified threshold having a
higher effective concentration than an unpurified signal, when the
nominal concentrations are the same, is the following: the
synthesis errors of an unpurified strand depend on the length of
the strand, because in the process of chemical synthesis each
nucleotide is attached to a growing chain of oligonucleotide
one at a time and the coupling efficiency of each step is less than

a

53

f

5

2
2

x1

x1
x2

x1
x2

x1x2
x1

x1

x2

x2

x2

18

22

1

6

10

f

1

2
2

x1

x2

y

y

y

y y

21

27

1

23

53

f

5

2

Input
W53,5

1

6

OR

10

1

1 y

23

–1.5

AND

Input
0
0.3
0.7
1

Input
0
0.3
0.7
1

Input
0
0.3
0.7
1

0
0
1
1

0
1
0
1

0 0
0
1

2
0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

Time (h)
0 2 4 6 8 10

Time (h)
0 2 4 6 8 10

Time (h)
0 2 4 6 8 10

Time (h)
0 2 4 6 8 10

Time (h)
0 2 4 6 8 10

Time (h)
0 2 4 6 8

[Th53,5:5]nom = 0.85 ×

[Th10,1:1]nom = 0.35 ×

–0.6 –1.5

–1.2 –1.5

[G1:1,23]tri = 0.8 ×

[Th53,5:5]sim = 0.5 × [Th53,5:5]nom = 0.5 × [Th53,5:5]sim = 0.7 ×

[Th53,5:5]nom = 0.5 ×
–0.5 –1.5

b c

d e

Figure 3 | Calibrating effective concentrations. (a) Simulations and (b) experimental data of digital signal restoration. (c) Estimating effective threshold

concentration by fitting simulations to the data obtained. (d) OR and AND logic gates constructed using adjusted nominal threshold concentrations.

(e) Estimating effective gate concentration. Data show steady-state fluorescence level. 1� ¼ 100 nM. Here and in later figures, all output signals in the

data were normalized using the minimum fluorescence signal (the first data point) of an OFF trajectory as 0 and the maximum fluorescence signal

(the average of the last five data points) of an ON trajectory as 1.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373 ARTICLE

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications

100% (ref. 30). Threshold molecules are composed of shorter
strands (15 and 25 nucleotides) than signal molecules
(33 nucleotides) and thus may contain fewer synthesis errors.

Additional signal restoration experiments suggested that the
threshold to signal ratio b/a¼ 1.4 was consistent for different
threshold and signal molecules (Supplementary Fig. 3). Thus,
using this ratio, we can then calculate how to adjust the nominal
thresholds for correctly computing logic AND and OR.

Each seesaw logic gate has an integrating node upstream of an
amplifying node. Ideally, an integrating node outputs the sum of
all inputs:

y¼
Xn

i¼1

xi ð8Þ

A two-input logic function can be computed as:

y¼ 1 x1þ x24th
0 x1þ x2� th

�
ð9Þ

Assuming that an ideal OFF state is [0, 0.2] and an ideal ON state
is [0.8, 1], th¼ 0.6 will compute logic OR and th¼ 1.2 will
compute logic AND, if the effective concentrations of the
threshold and input signals are comparable to each other (that
is, b/a¼ 1).

As b/aa1 for unpurified threshold and signal molecules, we
can take this ratio into consideration while calculating the lower
and upper bounds of the nominal threshold for an n-input logic
gate:

0:2n� a
b
� ThOR½ �nomo0:8� a

b
ð10Þ

n� 1ð Þþ 0:2½ �� a
b
� ThAND½ �nomo0:8n� a

b
ð11Þ

Using b/a¼ 1.4, we chose a nominal threshold of 0.35� and
0.85� for two-input OR and AND gate, respectively, and
0.4� and 1.6� for three-input OR and AND gate. Experiments
of the logic gates showed desired behaviours (Fig. 3d and
Supplementary Fig. 4).

An alternative approach for adjusting the nominal threshold is
to use the following equations:

ThOR½ �nom¼0:6� a
b

ð12Þ

ThAND½ �nom¼ n� 1ð Þþ 0:2½ �� a
b

ð13Þ

Compared with choosing a nominal threshold based on
the lower and upper bounds, this approach is less flexible but
simpler.

Next, we can estimate the ratio between g and a for a gate
releasing a signal, using an experiment that compares the
fully triggered (tri) concentration of the gate with the signal
when their nominal concentrations are the same. For example,
the data in Fig. 3e showed that G1:1;23

� �
tri¼0:8� when

G1:1;23
� �

nom¼ w1;23
� �

nom¼1�. Thus, the gate to signal ratio can
be calculated as:

g1;23

a1;23
¼

G1:1;23
� �

eff

G1:1;23
� �

nom

�
w1;23
� �

nom

w1;23
� �

eff

¼
G1:1;23
� �

eff

w1;23
� �

eff

�����
G1:1;23½ �nom

¼ w1;23½ �nom

¼ 0:8
1
¼0:8

ð14Þ

Additional gate calibration experiments suggested that the ratio
g/a¼ 0.8 was consistent for different gate and signal molecules

(Supplementary Fig. 5). We suspect that due to synthesis errors in
gate molecules, not all gates can successfully release a signal,
which is why an unpurified gate has a lower effective concen-
tration compared to a signal.

As signal restoration was built in within every logic gate to
accept an ON state of [0.8, 1], we decided not to make any
adjustment for nominal gate concentrations if g/aZ0.8. Other-
wise, nominal concentration of an amplifying gate and an n-input
integrating gate can be adjusted as:

GAMP½ �nom¼1� a
g

ð15Þ

GINT½ �nom¼n� a
g

ð16Þ

Importantly, the values of a, b and g should depend on the
strand quality and thus could vary with different DNA synthesis
providers, procedures and even batches. It is necessary to
recalculate the ratios b/a and g/a, if these conditions change.

Identifying outliers. With calibrated logic gates, we investigated
how well they compose together in larger circuits. We constructed
a two-layer logic circuit that is part of the rule 124 sub-circuit and
is composed of an AND gate and two upstream OR gates
(Fig. 4a). The expected circuit behaviour is that the output should
remain OFF when only one of the upstream OR gates is ON.
However, the observed circuit behaviour showed that the output
was reasonably OFF when one upstream OR gate was ON, but
was half ON when the other upstream OR gate was ON. This
experimental result suggested that the ON signals pushed onto
the two input wires of the downstream AND gate (that is, the
output wires of the two upstream OR gates) were significantly
different from each other, which was an indication that the
effective concentrations of the two unpurified gate species that
released the output signals were different—one of the gates must
be an outlier with g/aa0.8.

Indeed, with a gate calibration experiment shown in Fig. 4b,
we measured that g18,53/a18,53¼ 0.8� for one gate and
g22,53/a22,53¼ 0.44� for another. A possible explanation is that
the synthesis errors of unpurified strands somewhat depend on
DNA sequences30 and variations of effective concentrations may
occur between different gate or threshold species. We suspect it
was not a coincidence that the outlier gate had a lower effective
concentration compared with other unpurified gates, because a
particular DNA strand having much worse quality than average is
probably more likely than it having much better quality.

Once an outlier is identified, either a threshold or a gate, the
nominal concentration can be adjusted using its own threshold to
signal ratio (that is, b/a) or gate to signal ratio (that is, g/a), the
common nominal concentration described in the previous
section, and the common ratio for other thresholds and gates:

Thj;i:i
� �0

nom¼ Thj;i:i
� �

nom�
aj;i

bj;i
� b
a

ð17Þ

Gi:i;k
� �0

nom¼ Gi:i;k
� �

nom�
ai;k

gi;k
� g
a

ð18Þ

We constructed the two-layer logic circuit using the adjusted
nominal gate G22:22;53

� �0
nom¼1=0:44�0:8¼1:8� (Fig. 4c). The

trajectories that compute logic ON reached an ideal high
fluorescence state faster than the previous experiments shown
in Fig. 4a and the trajectories that compute logic OFF remained at
a lower fluorescence state that were roughly identical for all three
input combinations, regardless of which upstream OR gate was
ON. However, after identifying and adjusting the outlier gate, we
still had a problem: the OFF trajectories were not at an ideal low

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

6 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

fluorescence state. This led to the next tuning step that is
necessary for unpurified seesaw circuits.

Tuning circuit output. Comparing the behaviour of the AND
gate when it was in isolation (Fig. 3d) and that when it was
connected with two upstream OR gates (Fig. 4c), the ON/OFF
separation was significantly decreased in the latter. These
experimental results suggest that, compared with purified seesaw
DNA circuits in which the ON/OFF separations were roughly
identical from a single logic gate to four-layer logic circuits12,
unpurified circuits are much noisier and the behaviour becomes
less robust with more than one layer. We suspect this is caused by
the stoichiometry errors in unpurified gate species. The double-
stranded gate molecules were annealed with the same amount of
top and bottom strands, because both strands have combinations
of toehold and branch migration domains that can cause
undesired interactions with other circuit components and thus
neither should be in excess. However, due to variations in the
pipetting volume and in the accuracy of concentrations, the equal
stoichiometry cannot be guaranteed. Without purification, a
small excess of one strand or another in the gate species cannot be
removed. Therefore, the excess of strands would result in
undesired release of output signals in logic gates, even without
input signals, and introduce extra noise to downstream logic
gates.

Fortunately, thanks to the thresholding function in every logic
gate, we can tune the circuit output by increasing a threshold.
A simple method for estimating how much threshold adjustment
is needed is based on the ON/OFF separation of the circuit
output. Using experimental data of a logic circuit with different
inputs, we can choose a trajectory that should compute logic ON
and OFF, respectively, and calculate the difference (d) between
the observed OFF value and an ideal OFF value, when the ON
trajectory reaches an ideal ON value. Considering 0.7 and 0.3 as
the lower bound, and 0.9 and 0.1 as the upper bound for an ideal

ON/OFF separation, the range of d can be determined as:

yOFF
��

yON¼0:7
� 0:3 � d � yOFF

��
yON¼0:9

� 0:1 ð19Þ

The nominal threshold in the logic gate that produces the circuit
output can then be adjusted accordingly:

Thj;i:i
� �0

nom¼ Thj;i:i
� �

nomþ d� a
b

ð20Þ

Using the data of the two-layer logic circuit shown in Fig. 4c,
we chose the trajectory with input¼ 01010 and 11100 as the
reference ON and OFF trajectory, respectively, and calculated
0.08rdr0.41. We then increased the threshold in the down-
stream AND gate to Th53;5:5

� �0
nom¼0:85þ 0:28=1:4¼1:05� and

repeated the experiment. The circuit behaviour was improved
with a much better ON/OFF separation (Fig. 5a).

With the same method, we constructed another two-layer logic
circuit that is composed of an OR gate and two upstream AND
gates (Fig. 5b). In this case, using input¼ 00011 and 01110 as the
reference ON and OFF trajectories, we obtained a similar range of
d and decided to apply the same amount of increase to the
threshold in the downstream OR gate.

It is noteworthy that a rule of thumb is to choose the slowest
ON trajectory and the fastest OFF trajectory as the references for
threshold adjustment, but different choices can be made if one
has the knowledge of which data set is experimentally more
reliable. Also note that increasing the threshold not only
suppresses the OFF trajectories but also slows down the ON
trajectories and thus this method of tuning the circuit output is
only applicable if all ON trajectories are significantly faster than
all OFF trajectories (which should be true if the thresholds and
gates are properly calibrated).

Combining the two logic circuits shown in Fig. 5 and adding
fan-out gates for input signals that are used in multiple logic
gates, we successfully demonstrated the rule 124 sub-circuit
consisting of 54 distinct DNA species (Supplementary Fig. 6).

a

b c

ON

OFF

ON

OFF

18

f

53

2
1 2

6

y

y

–1.5

–1.5

34
x1 x3

x2 x3

22

f

53

2
1 2

6

39

53

f

y

5

2
2 1

6

39

f

22

2
2

29

35
1

34

f

18

2
3

28

37

–0.6 133
110
110
100

001
001

110

001

0 y

0
2

0
2

1

1
0
1
1
0
0
1
0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

Time (h)
0 2 4 6 8 10

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

1.0

0.8

0.6

0.4

0.2

0.0

Time (h)

x1
1
1
0
1
0
1
0
0

x2
1
1
1
0
1
0
0
0

x3
0
1
0
0
1
1
0
1

x4
0
0
1
0
1
0
1
1

x5
0
1
1
0
1
1
1
0

y

1
0
1
1
0
0
1
0

x1
1
1
0
1
0
1
0
0

x2
1
1
1
0
1
0
0
0

x3
0
1
0
0
1
1
0
1

x4
0
0
1
0
1
0
1
1

x5
0
1
1
0
1
1
1
0

y

Time (h)
0 1 2 3 0 2 4 6 8 10

S53
G22:22,53

G22:22,53

G18:18,53

G18:18,53

[G22:22,53]tri = 0.44 ×

[G22:22,53]′nom = 1.8 ×

[G18:18,53]tri = 0.8 ×

S53

S18

S18T* T**

S22T* T**

T

T

S22

S53

S22T* T**

TS22

S53

S18T* T**

TS18

x1 x2 x3

x1x2x3

x4x5

x1

x2

x3

x4

x5

[Th53,5:5]nom = 0.85 ×

[Th34,18:18]nom = 0.4 ×

[Th39,22:22]nom = 0.35 ×

–1.2 –1.5

–0.6

Figure 4 | Identifying an outlier gate. (a) Logic circuit diagram, seesaw circuit diagram and experimental data of a two-layer logic circuit. (b) Measuring

the effective concentrations of the gate species. Three independent circuits were used to measure the effective concentrations of two gates fully triggered

by x1 and x2, respectively, comparing with the effective concentration of x3 (using signal strand w18,53). (c) Experimental data of the two-layer logic circuit

using adjusted nominal gate concentration. 1� ¼ 100 nM.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373 ARTICLE

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 7

http://www.nature.com/naturecommunications

We do not have evidence of how well unpurified circuits with
multiple layers can be constructed, but we suspect that with the
same amount of threshold increase (that is, d� a/b) in all logic
gates at layer two and above, undesired signals released from
upstream gates can be effectively suppressed at every layer
without accumulating over an increasing number of layers.

Systematic procedure. Starting from the calibration of effective
concentrations for threshold and gate species in general, to the
identification and adjustment of any outliers, and then to the final
tuning of circuit output, we established three sequential steps for
building unpurified seesaw circuits. To make these steps easy to
follow, we now further describe a systematic procedure, and
evaluate the procedure by constructing a new logic circuit from
scratch—the rule 110 sub-circuit.

We summarized the procedure in a flowchart (Fig. 6). It starts
with constructing the simplest functional component, digital
signal restoration, and estimating the effective threshold com-
pared to a signal. If the threshold to signal ratio b/a41.2, adjust
the nominal thresholds in all logic gates. Next, construct a single
logic gate. If it fails to compute correctly, it indicates that the
threshold species in this logic gate is an outlier, and thus one
needs to go back to the first step and repeat the process to
calibrate this particular threshold. Otherwise, move on to gate
calibration experiments. If the gate to signal ratio g/ao0.8, adjust
all nominal gates.

Then construct a two-layer logic circuit, and identify if there
exists an outlier gate. If so, repeat the process to calibrate this
particular gate. At this point, the circuit still may not exhibit
desired ON/OFF separation (for example, the OFF trajectories
may be higher than 0.3 when the ON trajectories reach 0.7).
However, if the ON trajectories are significantly faster than the
OFF trajectories, increase the nominal threshold in the logic gate
that directly produces the circuit output to tune the circuit

behaviour. Continue to construct a larger circuit. If it fails to
compute correctly, the most likely reason would be a new outlier
gate. Identify the outlier based on cases where the ON/OFF
separation is worst, and repeat the steps for calibrating the gate
accordingly.

Following the flowchart, we completed the construction of the
rule 110 sub-circuit in only 3 days (Fig. 6). If all components were
PAGE purified, incrementally building the circuit would require
at least one additional day for each new experiment, assuming no
experimental errors. The turnaround time would be significantly
increased.

Combining the components from both rule 110 and rule 124
sub-circuits, using shared input-fanout gates and a three-input
NAND gate (Fig. 2ab), the full rule 110–124 circuit consisting of
78 distinct DNA species was constructed in one test tube. The
fluorescence kinetics experiments showed correct ON and OFF
states of the two pairs of dual-rail outputs, for all eight possible
inputs (Fig. 7a). To pictorially compare the ideal logic behaviour
and the DNA circuit behaviour, we plotted each output into an
array that represents eight cellular automata generations (Fig. 7b).
The ideal logic circuit behaviour corresponds to four images of
dogs. The DNA circuit behaviour yielded less contrast between
the dogs and their backgrounds, but the patterns were still clearly
recognizable.

Modelling. Despite that the experiments were performed at a
higher concentration (that is, 1� ¼ 100 nM), the rule 110–124
circuit computed much slower than what the simulations pre-
dicted for 1� ¼ 50 nM (Fig. 2c). We suspect that the difference
was caused by the impurity of the molecules. To better predict the
behaviour of seesaw circuits using unpurified components, we
developed a model that takes synthesis errors into consideration.

We first define the probability of having n errors in a
chemically synthesized DNA strand of l bases, given that r is the

ON

OFF

53

f

5

2
2 –1.2 1

6

–1.5

39

f

22

2
2

29

35

–0.6 1

34

f

18

2
3

28

37

–0.6 133

10

f

1

2
2 –0.6 1

23

–1.5

40

f

27

2
2

28

33

–1.2 1

36

f

21

2
3

29

38

–2.2 135
ON

OFF

0 0 0 1 1 1
1 0 0 0 1 0
0 1 0 1 0 0
0 0 1 1 1 1
1 1 0 0 0 0
1 0 1 0 1 0
0 1 1 1 0 0
1 1 1 0 0 1

1 1 1 0 0 0
0 1 1 1 0 1
1 0 1 0 1 1
1 1 0 0 0 0
0 0 1 1 1 1
0 1 0 1 0 1
1 0 0 0 1 1
0 0 0 1 1 0

x2x3

x4

x5

y

[Th34,18:18]nom = 0.4×

y

[Th53,5:5]′nom = 1.05×

[G22,22:53]′nom = 1.8×

[Th39,22:22]nom = 0.35 ×

[Th36,21:21]nom = 1.6 ×

y

[Th40,27:27]nom = 0.85 ×

[Th10,1:1]′nom = 0.55×

y

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

0 5 10 15 20

Time (h)

y

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

0 5 10 15 20
Time (h)

y

a

b

1.0
0.8
0.6
0.4
0.2
0.0

0 2 4 6 8 10

1.0
0.8
0.6
0.4
0.2
0.0

0 2 4 6 8 10

x1

x2 x3 x4 x5x1

x2 x3 x4 x5x1

x2

x3

x4

x5

x1

x2x3

x4

x5

x1

x2

x3

x4

x5

x1

Figure 5 | Tuning circuit output. Logic circuit diagram, seesaw circuit diagram and experimental data of a two-layer logic circuit with (a) two upstream OR

gates connected to a downstream AND gate and (b) two upstream AND gates connected to a downstream OR gate. Nominal concentrations shown in grey

and black indicate adjustments made in a previous step and in this step, respectively. Small insets of experimental data show the circuit behaviours before

adjustments. 1� ¼ 100 nM.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

8 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

probability of synthesis error per base:

P r; l; nð Þ¼ l
n

� �
� 1� rð Þl� n�rn ð21Þ

We then calculate the populations of signal, gate and threshold
molecules with and without synthesis errors (Fig. 8a). To make
the model simple enough, but accurate enough to describe
reactions that involve molecules with synthesis errors at distinct

locations, we treat the very small population of molecules with
more than one synthesis error as non-reactive, and classify the
remaining molecules containing a single synthesis error based on
the domain where the error occurs. For example, a signal strand is
composed of two branch migration domains flanking a toehold
domain. Given that a branch migration domain has 15 bases and
a toehold domain has 5 bases, the probability of a signal strand
having s errors in a specific branch migration domain (and thus
not in the other) and t errors in the toehold domain can be

Apply equation 7:

Apply equations 10 and 11 for n = 2:

Apply equations 19 and 20:

Digital signal restoration

Start

Estimate effective threshold

Adjust nominal threshold

Logic gates

Two-layer logic circuits

Outlier gate?

Outlier
threshold?

Adjust nominal threshold

Larger circuits

Correct
computation?

End

N

Y

N

Y

Y

N

N

Y

N

ON

OFF

Measure effective gate

Adjust nominal gate

Apply equation 14:

N

Y

Y 0 0 0 1 1
1 0 0 1 1
0 1 0 0 1
0 0 1 1 0
1 0 1 1 0
0 1 1 0 0
1 1 1 0 0

0 0 0
1 0 0
0 1 0
0 0 1
1 1 0
1 0 1
0 1 1
1 1 1

0 0
0 1
1 0
1 1

0 0
0 1
1 0
1 1

0 0
2 0
0 1

Input

0.3
0.7
1

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t [Th43,30:30]sim = 0.7 ×

[Th43,30:30]nom = 0.5 ×

0 2 4 6 8 10
Time (h)

0

�43,30

�43,30

[W43,30]nom

[Th43,30:30]nom

= =
0.7

0.5
1.4=

0.28 = 0.4 ×
�
�

≤

0.85 = 1.2 × �
�

≤

[ThOR]nom = 0.8 × �
� 0.57=

[ThAND]nom < 1.6 × �
�

= 1.14

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

[Th43,30:30]nom = 0.35 ×

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

[Th44,31:31]nom = 0.85 ×

0 2 4 6 8 10
Time (h)

x1x2

x
2

x
1

x
3

x
4
x

5

x1x2

� / � > 1.2?

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

0.0 0.2 0.4 0.6 0.8 1.0
Time (h)

[G30,30:24]tri = 0.8 ×

�30,24

�30,24

[G30:30,24]eff

[W30,24]eff

= = =
0.8

1
0.8

W43,30 W30,24

� / � < 0.8?

 ≤ 0.3?

1.0

0.8

0.6

0.4

0.2

0.0
O

ut
pu

t

R1100
R110

1 L C R

0 5 10 15 20
Time (h)

0 5 10 15 20
Time (h)

1.0

0.8

0.6

0.4

0.2

0.0

O
ut

pu
t

0 2 4 6 8
Time (h)

L0

C 0

L1

C 1

R 1

R 0

R110
0

R110
1

0.08 = yOFF

yON= 0.7yOFF

yON= 0.7
– 0.3 ≤ δ ≤ yOFF

yON=0.9
– 0.1 = 0.48

[Th43,30:30]′ nom = [Th43,30:30]nom + × = 0.55 ×
�

�
�

� = 1.05 ×
�
�

×+[Th44,31:31]′ ′ nom = [Th44,31:31]nom

Figure 6 | Flowchart for building seesaw DNA circuits using unpurified components. Insets show how the flowchart was used to construct the rule 110

sub-circuit. Y (yes) and N (no) highlighted in orange in the flowchart indicate the situations encountered and decisions made while building the rule 110

sub-circuit. 1� ¼ 100 nM.

1.0

0.8

0.6

0.4O
ut

pu
t

0.2

0.0

0 5 10 15 20

Time (h)

1.0

0.8

0.6

0.4O
ut

pu
t

0.2

0.0

0 5 10 15 20

Time (h)

1.0

0.8

0.6

0.4O
ut

pu
t

0.2

0.0

0 5 10 15 20

Time (h)

1.0

0.8

0.6

0.4O
ut

pu
t

0.2

0.0

0 5 10 15 20

Time (h)

R1241 R1240 R1101 R1100

L C R
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

1.0

0.8

0.6

0.4

0.2

0

a

b

Figure 7 | Implementing the rule 110–124 full circuit. (a) Fluorescence kinetics data of the two pairs of dual-rail outputs. 1� ¼ 100 nM. All DNA

sequences are listed in Supplementary Table 1. (b) Comparing the ideal logic circuit behaviour (left) with the DNA circuit behaviour (right). Each of the

circuit outputs is illustrated by an array of 7� 8 cells, representative of eight cellular automata generations on a torus with starting configuration

(0,0,0,1,0,0,0). The arrays for the DNA circuit were plotted using the output values at 24 h from the data. The ideal logic circuit behaviour corresponds to

an image of a black dog with a white background for R1241, an inverted image for R1240 and their mirror images for R1101 and R1100, respectively.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373 ARTICLE

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications

calculated as:

Pw r; s; tð Þ¼P r; 15; sð Þ�P r; 5; tð Þ�P r; 15; 0ð Þ ð22Þ
In a previous study on the robustness of a catalytic DNA strand

displacement motif21, a single base mutation in an invading
strand significantly slowed down (on the scale of 100 fold) a
reversible strand displacement reaction that was designed with
DG�E0, both when the mutation was in the toehold and when it
was in the branch migration domain. In contrast, an irreversible
strand displacement reaction was only slowed down significantly
(also on the scale of 100-fold) when the mutation was in the
toehold domain, but the reaction rate remained roughly
unchanged when the mutation was in the branch migration
domain.

These observations lead us to the following interpretations:
A synthesis error in the toehold domain can slow down strand
displacement by increasing the disassociation rate of the toehold
and thus decreasing the overall reaction rate. A synthesis error in
the branch migration domain can also slow down strand
displacement, but only when the energy change caused by the
synthesis error is significant compared to the designed standard
free energy of the reaction, and not when the reaction is already
strongly favoured in one direction. Based on these interpretations,
we estimated the rates of all five types of reactions in a seesaw

network, involving all populations of defective molecules (Fig. 8b
and Supplementary Note 1).

We first simulated the rule 110–124 circuit assuming that all
molecules do not have synthesis errors, at the concentrations used
in the experiments (Fig. 9a). Using exactly the same concentra-
tions for all species, and the same rate parameters for reactions
that are not affected by synthesis errors, we then simulated the
circuit with each species divided into multiple populations
including synthesis errors (Fig. 9b). The results of these two
simulations were dramatically different: only the latter exhibited a
remarkable degree of agreement with the data shown in Fig. 7a.

Discussion
The biggest challenge that could prevent a molecular compiler
from working in practice is that a new circuit may require new
molecular components, which may not behave the same as the
ones previously characterized. Thus, what made it possible to
build a new complex circuit using the Seesaw Compiler? First,
there are only three types of molecular components (signal, gate
and threshold) for arbitrary feedforward logic circuits, which
yield highly predictable circuit behaviour. Second, because of the
simplicity of the molecules, there is minimal sequence design
challenge. A three-letter code (A, T and C) for all signal strands is
sufficient to eliminate undesired reactions. Finally, exact kinetics

Pw (r, 0,0) = 70.3%

wj,i

wj,i + Gi:i,k

wj,i + Thj,i:i

wj,i + Repi Fluori

ks

ks ks

ks ⁄ 100

ks ⁄ 50

kf ⁄ 100kf

2ks

∅

Gj,i:i + wi,k

Gi:i,k Gi:i*,k Gi:i,*k G*i:i,k Gi*:i,kGi:i,k*

Gi:i,k

Gi:i,xGi:i*, k

G*i:i,k

Gj,i*:i wi,k

wj*,i wj ,*i wj,i*

wj,i*

Thj,i:i Thj,*i:i

PG(r, 0,0) = 63.6% PG(r, 1,0) = 9.6% PG(r, 0,1) = 3.2% PG(r, 1,0) = 9.6% PG(r, 0,1) = 3.2% PG(r, 0,1) = 3.2%

T* T*

T

Si*T* T*Si*

Sj*

T* T*Si*T* T*Si*

T*

T*

T*

T*Si*

Si*

Si*

T*

T*

Si*

Si*

Sj*

T* T*Si*

T* T*Si*T* T*Si*

SiTSi

SkSk

TSi

Sk

TSi

Sk

TSi

Sk

TSi

Sk

T Si

Sj

T Si

Sj

T

T T T

T

T

T

T

Si

Si Si Si

Si Si

Si

Sj

Sj

Sj

Si

Si

Si Q
F F

Si Si

Sj

Sj Sk
Sk

Sj

T

T

T

T

T

T
T

T

T

Si

Si

Si

Si

Si

Si

Si
Si

Sj

Sx

Sx

Sx

Sy

Sy

T

T

Sk

Sk

Sk

Sk

Sk

Sx

Sx

Sy

Sy

T Si

Sj

T*

Si Si

Si*Sj* T* Si*Sj*

Pw (r, 1,0) = 10.7% Pw (r, 0,1) = 3.6% Pw (r, 1,0) = 10.7% PTh(r, 0) = 90.4% PTh(r, 1) = 9.1%

Seesawing reactions

Thresholding reactions

Reporting reactions

Leak reactions

Universal toehold
binding reactions

WasteWaste

Waste

Without synthesis errors With synthesis errors

+ +

+

+

+

+

+

+

+

+

←→

→

→

wi,x + Gi:i,k

wx,y + Gi:i,k

wx,y + Thj,i:i

kl
wi,k + Gi:i,x

Gx,y:i:i,k

Thx,y:j,i:i

→

kf

krf

←→

kf

krs

←→
wx,y

wx,y

wi,x

wj,*i

wj,*i Thj,i:i

Repi Fluori

Q

2kl

kf

kf

10krf

10krs

T* T*Si*

T* T*Si*

Sj* Sj*T* Si*

T* T*Si*

T* T*

T*

Si*

Si

Si*

wi*,k

Gx,y:*i :i,k

Thx,y:j,*i:iThj,*i:i

a

b

Figure 8 | A model for unpurified seesaw circuits. (a) Populations of signal, gate and threshold molecules without and with synthesis errors in the marked

locations. r¼0.01. (b) Example reactions that involve DNA strands without and with synthesis errors. 8i, j, k, x and y.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

10 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications

is not essential for qualitatively correct computation and thus
small difference caused by DNA sequences should not affect the
desired circuit behaviour.

On the other hand, the biggest challenge that could prevent us
from using unpurified DNA strands is that the synthesis errors
may lead to completely unpredictable molecular behaviours.
Thus, what made it possible to build a complex circuit using
unpurified strands? First, the Seesaw Compiler provides simula-
tions as a debugging tool and makes it straightforward to identify
problems caused by the synthesis errors. Second, again because
there are only three types of species, it is relatively easy to
understand the behaviours of defective molecules, as we expect
similar synthesis quality across distinct species of the same type.
More importantly, the signal restoration built in to every logic
gate allows simple tuning to restore desired circuit behaviour,
compensating for the impurity of molecules.

In general, there are several factors that we find important for
the goals of producing a better molecular compiler, and
implementing unpurified DNA circuits with more robust
behaviours. Given that it is difficult to obtain fully predictable
behaviour for newly designed molecular components, alternative
architectures that enable arbitrary circuits to be created from a
constant number of molecules will likely promote the develop-
ment of compilers that work reliably in these contexts31. It is also
necessary to eliminate leak reactions in DNA circuits32 and to
improve the building blocks such that they are substantially less
sensitive to synthesis errors and stoichiometry errors.

Nonetheless, with an experimental validation of the Seesaw
Compiler and simplified experimental procedures using unpur-
ified DNA strands described in this work, it is now possible to
imagine a near future in which a molecular compiler can generate
protocols from a high-level circuit function, and the protocols can
then be executed by a liquid handling robot. Molecular engineers
typing away on a computer to create biochemical circuits in a test
tube is no longer just a distant dream.

Methods
DNA oligonucleotide synthesis. DNA oligonucleotides were purchased from
Integrated DNA Technologies (IDT). The DNA strands in gate, threshold and fuel

species were purchased unpurified (standard desalting). The reporter strands with
fluorophores and quenchers were purchased purified (HPLC). All strands were
purchased at 100 mM in TE buffer pH 8.0 and stored at 4 �C.

Annealing protocol and buffer condition. Gate complexes were annealed
together at 20 mM, with equal stoichiometry of top and bottom strands. Threshold
and reporter complexes were annealed together at 20 mM with a 20% excess of top
strands. All DNA complexes were annealed in 1� TE buffer with 12.5 mM Mg2þ ,
prepared from 100� TE pH 8.0 (Fisher BioReagents) and 1 M MgCl2 (Invitrogen).
Annealing was performed in a thermal cycler (Eppendorf), first heating up to 90 �C
for 2 min and then slowly cooling down to 20 �C at the rate of 6 s per 0.1 �C. All
annealed complexes were stored at 4 �C.

Fluorescence spectroscopy. Fluorescence kinetics data in Figs 3–6 and
Supplementary Figs 3–6 were collected every 2 min in a monochromator-based
plate reader (Synergy H1M, BioTek). Experiments were performed with 100 ml
reaction mixture per well, in 96-well microplates (black with clear flat bottom,
polystyrene NBS, Corning 3651) at 25 �C. Clear adhesive sealing tapes (Thermo
Scientific Nunc 232701) were used to prevent evaporation. The excitation/emission
wavelengths were set to 497/527 nm for ATTO 488 and 597/629 nm for ATTO 590.

Fluorescence kinetics data in Fig. 7 were collected every 4 min in a
spectrofluorimeter (Fluorolog-3, Horiba). Experiments were performed with 500 ml
reaction mixture per cuvette, in fluorescence cuvettes (Hellma 115 F-QS) at 25 �C.
The excitation/emission wavelengths were set to 502/522 nm for ATTO 488, 602/
624 nm for ATTO 590, 560/575 nm for ATTO 550 and 649/662 nm for ATTO 647.
Both excitation and emission bandwidths were set to 2 nm and the integration time
was 10 s for all experiments.

Data analysis. A Mathematica Notebook file for data analysis and example data
files are available to download at the Seesaw Compiler website: http://qianlab.cal-
tech.edu/SeesawCompiler/DataAnalysis.php.

Data availability. Key data supporting the findings of this study are available to
download at the Seesaw Compiler website and all other data are available from the
corresponding author upon reasonable request.

References
1. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-

displacement reactions. Nat. Chem. 3, 103–113 (2011).
2. Zadeh, J. N. et al. NUPACK: analysis and design of nucleic acid systems.

J. Comput. Chem. 32, 170–173 (2011).
3. Lakin, M. R., Youssef, S., Polo, F., Emmott, S. & Phillips, A. Visual DSD:

a design and analysis tool for DNA strand displacement systems.
Bioinformatics 27, 3211–3213 (2011).

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0

0 5 10 15 20

Time (h)

R1241 R1240 R1101 R1100

L C R

R1241 R1240 R1101 R1100

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0

0 5 10 15 20

Time (h)

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0

0 5 10 15 20

Time (h)

1.0
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

L C R
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0

0 5 10 15 20

Time (h)

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0
0 5 10 15 20

Time (h)

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0
0 5 10 15 20

Time (h)

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0
0 5 10 15 20

Time (h)

1.0

0.8

0.6

O
ut

pu
t

0.4

0.2

0.0
0 5 10 15 20

Time (h)

a

b

Figure 9 | Simulations comparing the purified and unpurified models. (a) Simulations of the rule 110–124 circuit using the previously developed model for

purified seesaw circuits, predicting that the circuit should yield desired outputs in roughly 8 h (shown as dotted lines) and the undesired reactions will take

over in 24 h. (b) Simulations using the new model for unpurified seesaw circuits, predicting that the circuit should yield desired outputs in roughly 24 h.

kf¼ 2� 106 M� 1 s� 1, ks¼ 5� 104 M� 1 s� 1, kl¼ 10 M� 1 s� 1, krf¼ 26 s� 1, krs¼ 1.3 s� 1. 1� ¼ 100 nM.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373 ARTICLE

NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications 11

http://qianlab.caltech.edu/SeesawCompiler/DataAnalysis.php
http://qianlab.caltech.edu/SeesawCompiler/DataAnalysis.php
http://www.nature.com/naturecommunications

4. Zuker, M. Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res. 31, 3406–3415 (2003).

5. Gruber, A. R., Lorenz, R., Bernhart, S. H., Neuböck, R. & Hofacker, I. L. The
Vienna RNA websuite. Nucleic Acids Res. 36, W70–W74 (2008).

6. Schaeffer, J. M., Thachuk, C. & Winfree, E. Stochastic simulation of the
kinetics of multiple interacting nucleic acid strands. LNCS 9211, 194–211
(2015).

7. Lakin, M. R., Parker, D., Cardelli, L., Kwiatkowska, M. & Phillips, A. Design
and analysis of DNA strand displacement devices using probabilistic model
checking. J. R. Soc. Interface 9, 1470–1485 (2012).

8. Lakin, M. R., Phillips, A. & Stefanovic, D. Modular verification of DNA
strand displacement networks via serializability analysis. LNCS 8141, 133–146
(2013).

9. Grun, C., Sarma, K., Wolfe, B., Shin, S. W. & Winfree, E. A domain-level DNA
strand displacement reaction enumerator allowing arbitrary non-
pseudoknotted secondary structures. Preprint at https://arxiv.org/abs/
1505.03738 (2015).

10. Shin, S. W., Thachuk, C. & Winfree, E. Verifying chemical reaction
network implementations: a pathway decomposition approach. Preprint at
https://arxiv.org/abs/1411.0782 (2014).

11. Johnson, R. F., Dong, Q. & Winfree, E. Verifying chemical reaction network
implementations: a bisimulation approach. LNCS 9818, 114–134 (2016).

12. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand
displacement cascades. Science 332, 1196–1201 (2011).

13. Grun, C., Werfel, J., Zhang, D. Y. & Yin, P. DyNAMiC workbench: an
integrated development environment for dynamic DNA nanotechnology. J. R.
Soc. Interface 12, 20150580 (2015).

14. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming
biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

15. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns.
Nature 440, 297–302 (2006).

16. Tørring, T., Voigt, N. V., Nangreave, J., Yan, H. & Gothelf, K. V. DNA origami:
a quantum leap for self-assembly of complex structures. Chem. Soc. Rev. 40,
5636–5646 (2011).

17. Saccà, B. & Niemeyer, C. M. DNA origami: the art of folding DNA. Angew.
Chem. Int. Ed. 51, 58–66 (2012).

18. Kearney, C. J., Lucas, C. R., O’Brien, F. J. & Castro, C. E. DNA origami: folded
DNA-nanodevices that can direct and interpret cell behavior. Adv. Mater. 28,
5509–5524 (2016).

19. Chandrasekaran, A. R., Anderson, N., Kizer, M., Halvorsen, K. & Wang, X.
Beyond the fold: emerging biological applications of DNA origami.
ChemBioChem 17, 1081–1089 (2016).

20. Zhang, D. Y. Cooperative hybridization of oligonucleotides. J. Am. Chem. Soc.
133, 1077–1086 (2010).

21. Zhang, D. Y. & Winfree, E. Robustness and modularity properties of a
non-covalent DNA catalytic reaction. Nucleic Acids Res. 38, 4182–4197 (2010).

22. Qian, L. & Winfree, E. A simple DNA gate motif for synthesizing large-scale
circuits. J. R. Soc. Interface 8, 1281–1297 (2011).

23. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand
displacement cascades. Nature 475, 368–372 (2011).

24. Qian, L. Seesaw Compiler, http://www.qianlab.caltech.edu/SeesawCompiler/
(2011).

25. Müller, D. E. Asynchronous Logics and Application to Information Processing,
Switching Theory in Space Technology (Stanford University Press, 1963).

26. Lakin, M. et al.Visual DSD, https://www.microsoft.com/en-us/research/project/
programming-dna-circuits/ (2009).

27. Soloveichik, D. CRNSimulator, http://users.ece.utexas.edu/~soloveichik/
crnsimulator.html (2009).

28. Wolfram, S. Statistical mechanics of cellular automata. Rev. Mod. Phys. 55, 601
(1983).

29. Cook, M. Universality in elementary cellular automata. Complex Syst. 15, 1–40
(2004).

30. Integrated DNA Technologies. Chemical Synthesis and Purification of
Oligonucleotides, https://www.idtdna.com/pages/docs/technical-reports/
chemical-synthesis-of-oligonucleotides.pdf (2005).

31. Qian, L. & Winfree, E. Parallel and scalable computation and spatial dynamics
with DNA-based chemical reaction networks on a surface. LNCS 8727,
114–131 (2014).

32. Thachuk, C., Winfree, E. & Soloveichik, D. Leakless DNA strand displacement
systems. LNCS 9211, 133–153 (2015).

Acknowledgements
A.J.T. was supported by an NSF grant (1351081) and an NSF expedition in computing
(1317694). C.T. was supported by a Banting Fellowship. L.Q. was supported by a Career
Award at the Scientific Interface from the Burroughs Wellcome Fund (1010684) and a
Faculty Early Career Development Award from NSF (1351081). All other authors were
supported by Innovation in Education funds from the Provost’s Office at the California
Institute of Technology, through a class BE/CS 196—Design and Construction of Pro-
grammable Molecular Systems.

Author contributions
C.T. designed the logic circuit. C.T., J.B., R.F.J. and D.A.A. designed the DNA circuit,
performed the experiments and analysed the data of the rule 124 sub-circuit. K.M.C.
designed and performed the experiments, and analysed the data for gate calibration.
A.J.T. designed and performed the experiments and analysed the data of the full circuit
and led the project to completion. C.T. and L.Q. developed the model. A.J.T., C.T. and
L.Q. wrote the manuscript. L.Q. initiated and guided the project.

Additional information
Supplementary Information accompanies this paper at http://www.nature.com/
naturecommunications

Competing financial interests: The authors declare no competing financial
interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

How to cite this article: Thubagere, A. J. et al. Compiler-aided systematic construction
of large-scale DNA strand displacement circuits using unpurified components.
Nat. Commun. 8, 14373 doi: 10.1038/ncomms14373 (2017).

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0
International License. The images or other third party material in this

article are included in the article’s Creative Commons license, unless indicated otherwise
in the credit line; if the material is not included under the Creative Commons license,
users will need to obtain permission from the license holder to reproduce the material.
To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

r The Author(s) 2017

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14373

12 NATURE COMMUNICATIONS | 8:14373 | DOI: 10.1038/ncomms14373 | www.nature.com/naturecommunications

https://arxiv.org/abs/1505.03738
https://arxiv.org/abs/1505.03738
https://arxiv.org/abs/1411.0782
http://www.qianlab.caltech.edu/SeesawCompiler/
https://www.microsoft.com/en-us/research/project/programming-dna-circuits/
https://www.microsoft.com/en-us/research/project/programming-dna-circuits/
http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
http://users.ece.utexas.edu/~soloveichik/crnsimulator.html
https://www.idtdna.com/pages/docs/technical-reports/chemical-synthesis-of-oligonucleotides.pdf
https://www.idtdna.com/pages/docs/technical-reports/chemical-synthesis-of-oligonucleotides.pdf
http://www.nature.com/naturecommunications
http://www.nature.com/naturecommunications
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://www.nature.com/naturecommunications

	title_link
	Results
	Circuit design

	Figure™1Automated circuit design steps using the Seesaw Compiler.A feedforward digital logic circuit is first translated into an equivalent dual-rail logic circuit and then translated into an equivalent seesaw DNA circuit. Visual DSD code and Mathematica
	Calibrating effective concentrations

	Figure™2Design of a rule 110-124 circuit using the Seesaw Compiler.(a) Gate diagram and truth table of a digital logic circuit that computes the transition rules 110 and 124 of elementary cellular automata. (b) Seesaw gate diagram of the equivalent DNA st
	Figure™3Calibrating effective concentrations.(a) Simulations and (b) experimental data of digital signal restoration. (c) Estimating effective threshold concentration by fitting simulations to the data obtained. (d) OR and AND logic gates constructed usin
	Identifying outliers
	Tuning circuit output

	Figure™4Identifying an outlier gate.(a) Logic circuit diagram, seesaw circuit diagram and experimental data of a two-layer logic circuit. (b) Measuring the effective concentrations of the gate species. Three independent circuits were used to measure the e
	Systematic procedure
	Modelling

	Figure™5Tuning circuit output.Logic circuit diagram, seesaw circuit diagram and experimental data of a two-layer logic circuit with (a) two upstream OR gates connected to a downstream AND gate and (b) two upstream AND gates connected to a downstream OR ga
	Figure™6Flowchart for building seesaw DNA circuits using unpurified components.Insets show how the flowchart was used to construct the rule 110 sub-circuit. Y (yes) and N (no) highlighted in orange in the flowchart indicate the situations encountered and
	Figure™7Implementing the rule 110-124 full circuit.(a) Fluorescence kinetics data of the two pairs of dual-rail outputs. 1times=100thinspnM. All DNA sequences are listed in Supplementary Table™1. (b) Comparing the ideal logic circuit behaviour (left) with
	Discussion
	Figure™8A model for unpurified seesaw circuits.(a) Populations of signal, gate and threshold molecules without and with synthesis errors in the marked locations. r=0.01. (b) Example reactions that involve DNA strands without and with synthesis errors. for
	Methods
	DNA oligonucleotide synthesis
	Annealing protocol and buffer condition
	Fluorescence spectroscopy
	Data analysis
	Data availability

	ZhangD. Y.SeeligG.Dynamic DNA nanotechnology using strand-displacement reactionsNat. Chem.31031132011ZadehJ. N.NUPACK: analysis and design of nucleic acid systemsJ. Comput. Chem.321701732011LakinM. R.YoussefS.PoloF.EmmottS.PhillipsA.Visual DSD: a design a
	Figure™9Simulations comparing the purified and unpurified models.(a) Simulations of the rule 110-124 circuit using the previously developed model for purified seesaw circuits, predicting that the circuit should yield desired outputs in roughly 8thinsph (s
	A.J.T. was supported by an NSF grant (1351081) and an NSF expedition in computing (1317694). C.T. was supported by a Banting Fellowship. L.Q. was supported by a Career Award at the Scientific Interface from the Burroughs Wellcome Fund (1010684) and a Facu
	ACKNOWLEDGEMENTS
	Author contributions
	Additional information

