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1 Materials and methods

1.1 Sequence design

Toehold pool

A 7-nt toehold pool for Lj on the learning gates and Tj on the weight gates was designed using
StickyDesign.1 We generated a pool of five orthogonal toeholds. Four were required and an ad-
ditional one was made for backup in case an unexpected spurious reaction was discovered during
later experiments. The provided function ‘easyends’ was used to design a set of roughly equivalent
energy, orthogonal toeholds. In order to also avoid unintended interactions with components in
other layers of the neural network, the 5-nt universal toehold T was pre-populated in the initial
sequence array using the ‘oldends’ parameter. For use in this function, it was artificially extended to
7 nucleotides by adding two As to the 5’ end, although this was later found to be unnecessary. The
‘energeticsDAOE’ energy function was used with a temperature of 25 ◦C and ‘coaxparams’ was set
to ‘protozanova’. The ‘easyends’ function generated five new ‘DT’ style toeholds with the alphabet
set to H (A, C, or T), both adjacent nucleotides set to A, ‘fdev’ set to 0.05, and ‘maxspurious’ set to
0.30. The function was run until we obtained a set of toeholds that did not contain any consecutive
subsequences of the same nucleotide longer than length 4. The average Gibbs’ free energy of the
resulting 7-nt toehold pool was −9.87 kcal/mol with standard deviation 0.038 kcal/mol.

en=EnergeticsDAOE(enclass=’EnergeticsDAOE’, temperature=25,

coaxparams=’protozanova’, danglecorr=True, singlepair=False, version=’0.6.0’)

stickydesign.easyends(’DT’, 7, number=5, energetics=en, alphabet=’h’,

adjs=[’a’,’a’], fdev=0.05, maxspurious=0.30, oldends=oldends)

The 9-nt AT-only toehold U was also selected using StickyDesign. We generated all toehold
sequences of length 7, 8, 9, or 10 consisting only of A and T nucleotides that did not contain a run of
more than 4 of the same nucleotide. All energies were calculated using the ‘EnergeticsDAOE’ energy
class, with a temperature of 25 ◦C, and ‘protozanova’ set to coaxparams. The ‘energy array uniform’
function was used to calculate the Gibbs’ free energy of each sequence. Our initial chose was a 7-nt
AT-only toehold U that had ∆G = −6.31 kcal/mol. To match the strength of the 7-nt toeholds
with A, T, and C nucleotides used in earlier experiments, which had energy ranging from −9.36 to
−11.85 kcal/mol, we updated the toehold U to 9 nucleotides (Fig. S19c). The ten strongest AT-only
toehold sequences of 9 nucleotides had a calculated free energy of −9.59 kcal/mol and were selected
for further analysis. The ten candidate toehold sequences were appended to an array of the four
chosen 7-nt Lj and Tj toeholds and the ‘energy array uniform’ function was used to calculate all
pairwise binding energies. We selected the toehold sequence that was most orthogonal to the four
7-nt toeholds by having the highest minimum calculated free energy indicating the least interaction.

Xi pool

The 15-nt Xi sequence pool was designed through iterative optimization subject to heuristic design
constraints. The new sequence pool was pre-populated with the six domains (P1, P2, S1, S2,
Y1, and Y2) used in the downstream layers of the network, which were selected from a previously
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published sequence pool.2 We have successfully utilized these six domain sequences in winner-take-
all DNA neural networks trained in silico,3 and therefore they were not edited during the pool
optimization process. The previously published sequence pool only contained 56 sequences, and
thus was not suitable for the 100 Xi domain sequences needed here.

The Xi pool was initialized with 100 new sequences that met some basic selection criteria. First,
all sequences must contain between 30% and 70% Cs. Second, the 3’ end cannot be ‘AA’ in order to
avoid stronger occlusion between the activator strand and the input strand when the bulge domain
B∗ is complementary to the first two nucleotides on the 3’ end of the Xi domain. Third, the 5’
end was set to ‘CA’ to be compatible with the universal clamp sequence used in the seesaw gates.2

Fourth, the ninth and tenth nucleotides were set to ‘C’ and ‘A’ in order to lock the T1 or T2 toehold
loops into place (Fig. S21f). Finally, for synthesis reasons sequences cannot contain five consecutive
Ts, five consecutive As, and four consecutive Cs, and for occlusion reasons, they cannot contain U∗
or any 9-nt subsequences of label inhibitor strands Inh1 and Inh2. New sequences in the iterative
procedure described below can be added to the initial sequence pool if they meet these criteria.

Combining the 6 pre-populated sequences and the 100 new Xi sequences, an initial pool of 106
sequences was created. We then optimized the pool to minimize the similarity of the sequences.
To measure similarity, three scores were computed for each pair of sequences including the count of
matching bases at each nucleotide index, the longest length run of these matching bases, and the
length of the longest common subsequence. An additional penalty of five was added to the second
score to increase its importance compared to the other scores.

The scores for each sequence were converted to a polynomial where the coefficients were the
frequencies of a specific score across the pool and the exponent was the score value. These polyno-
mials were easy to manipulate mathematically and allowed us to keep the different scores separate.
Commonly, a sequence in the initial pool had a few high-score similarities with the rest of the
pool, but dozens more low-score similarities. We chose to reduce higher scores at the expense of
increasing the frequency of lower scores. This optimization approach allowed us to preferentially
reduce the number of severe sequence interactions while still attempting to reduce minor sequence
interactions.

Sequences were ranked by total similarity to the rest of the pool with the largest polynomial
ranked first. New sequences were chosen to replace old sequences according to a probability function
1/x2+i/n, where x is the ranking index of the sequence, i is the current number of iteration, and n
is the maximum number of iterations. At the beginning of the optimization process the function
was 1/x2, and became 1/x3 at the last iteration. Thus, the sequence with the worst score is always
replaced with probability equal to one. The probability of replacing the next worst sequence begins
as 1/4, and the probability of replacing the next few sequences in the ranking quickly approaches
zero. As the sequence pool becomes more highly optimized near the end of the iteration process,
the probability of replacing more than only the worst sequence decreases. At each iteration, all
sequence scores were summed into a pool score which was compared to the previous minimum pool
score. If the new pool score was lower, that pool was kept. The optimization procedure was run
for ten million iterations.

Ai pool

The 9-nt Ai sequence pool was optimized via the same iterative procedure as the Xi sequence pool.
However, the process for creating the initial sequence pool and the constraints on new sequences
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were different. New candidate sequences must meet three criteria: First, same as the Xi sequence
pool, all sequences must contain between 30% and 70% Cs. Second, the 3’ nucleotide was set to
C, which helps avoid stronger occlusion between the activator strand and the label inhibitor strand
when the clamp domain c is complementary to the first two nucleotides on the 3’ end of the Ai
domain. Finally, for synthesis reasons sequences cannot contain five consecutive Ts, five consecutive
As, and four consecutive Cs (same as the Xi sequence pool), and for occlusion reasons, they cannot
contain any 6-nt subsequences of toeholds T1 and T2.

Acquiring an optimized pool of 100 Ai sequences was expedited by requiring eighty sequences to
have eighty different four nucleotide tuples of A, C, and T on their 5’ end. Out of 34 = 81 possibil-
ities, the last tuple consisting of four Cs was excluded for synthesis reasons. These four nucleotides
of each sequence was immutable. Using the eighty different tuples on the 5’ end guaranteed the
initial branch migration of the Ai domain would be as orthogonal as possible without having to
randomly explore that part of the sequence space. The remaining five nucleotides of those eighty
sequences as well as the twenty unspecified sequences were filled in randomly, provided they met
the above criteria for new candidate sequences. The optimization routine was run with ten million
iterations using the same sequence similarity scoring and sequence replacement function described
for the Xi sequence pool.
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1.2 DNA oligonucleotide synthesis

Except for experiments that compared strand purity (for example, Fig. S21d), all unmodified DNA
strands were ordered unpurified (standard desalting) from Integrated DNA Technologies (IDT) with
the LabReady service, shipped at a 100 µM concentration in IDTE Buffer, pH 8.0. Strands modified
with fluorophores or quenchers were ordered HPLC purified.

1.3 Concentration measurements

DNA concentration was measured using two methods (Fig. S1). A Nanodrop (Thermo Fisher) was
used for low-throughput measurements such as a few tubes of stock DNA or tubes of complexes
recovered from in-house PAGE purification. A Take3 microvolume plate and a Synergy H1 (Biotek)
microplate reader were used for high-throughput absorbance measurements, such as measuring
concentration of stock DNA stored in 96-well plates (IDT deep well plates or Echo source plates).
In order to determine accurate concentrations for short DNA strands, the extinction coefficient of
a single strand or two-stranded complex was calculated for each sample.
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Fig. S1 | Concentration measurements. a, Measured concentrations of DNA strands from a 96-well deep
well plate upon arrival from Integrated DNA Technologies, ordered with LabReady at a nominal concentration of
100 µM. b, Comparing the high-throughput measurements using a Take3 microvolume plate and the low-throughput
measurements using a NanoDrop.
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1.4 Annealing protocol and buffer condition

Complexes were prepared by mixing stock DNA strands with buffer and then annealed at the highest
concentration possible in either 0.5 mL tubes or in conical 96-well plates. Strands were ordered at a
nominal concentration of 100 µM, but in practice were typically at lower concentrations (Fig. S1a).
For two-stranded complexes annealed from 100 µM strands at a 1:1 ratio, 10% of the final sample
volume was a TE buffer with 10× Mg2+ at 125 mM, yielding a final solution of complex at 45 µM
in TE buffer with 1× Mg2+ at 12.5 mM. With typical stock concentrations lower than 100 µM,
complex concentrations around 41 µM were more common. Volumes of stock DNA strands were
adjusted accordingly if the annealing ratio was different, such as for 1:1.2 (Fig. S24).

The mixing procedures were performed either by hand pipetting (using Eppendorf Research Plus
pipettes) when making only a few complexes. When the 200 learning gates (inhibited activators)
and 200 weight gates (inhibited weights) were annealed, we used an Echo liquid handler (Beckman
Coulter) which transferred stock strands and buffer into 96-well plates. Since all of the stock
strands had different starting concentrations, the liquid handler was programmed to adjust for the
concentration of each strand. It was important all of these complexes remained relatively at the
same concentration after combining the mixes and before in-house PAGE purification, so the Echo
also transferred a specific amount of TE buffer. In the end, all plate wells contained complex mixes
with the same volume and concentration. Plates were briefly centrifuged to collect liquid at the
bottom of the wells, and then they were covered with a metallic sticker cover to prevent evaporation.

Annealing was performed in a thermocycler (Thermo Fisher). The samples were held at 90 ◦C for
5 minutes before ramping down from 90 ◦C to 20 ◦C in steps of 1 ◦C per minute. The temperature
was then held at 20 ◦C until samples were collected.

1.5 Purification

DNA complexes were purified using electrophoresis (Cytiva SE 600 Ruby) on 12% polyacrylamide
gels formed with TAE buffer. Annealed DNA samples were mixed with a 10× loading buffer
containing 25% Ficoll-400 and bromophenol blue dye. Between 40 and 180 µL of sample was loaded
into each well. Electrophoresis occurred at a constant 150 V for between 9 and 15 hours while
immersed in a 20 ◦C water bath. Target bands were cut from the gel while visualizing their shadow
under UV light, cut into small pieces, and incubated in TE buffer with 12.5 mM Mg2+ for 24 hours.
Buffer containing the purified complexes was extracted from the incubation tube and transferred
to a new tube. The concentration of the purified complexes was determined by Nanodrop (Thermo
Fisher). The summation gates, annihilator, and restoration gates were purified individually. For the
inhibited activators and inhibited weights, all complexes were annealed individually then mixed at
equal ratios into four pools before purification. Each pool contained 100 gates of the same type for
one of the two memories. The average extinction coefficient was used to calculate the concentration
of each pool of gates purified in one pot.

1.6 Fluorescence kinetics experiments

Fluorescence kinetics experiments were performed with standard concentration equal to 50 nM or
100 nM in glass-bottom plates (Corning) in a microplate reader (Synergy H1, Biotek). Diagnostic
tests were conducted in 50 µL or 100 µL volume in 96-well plates. High-throughput experiments, for
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example, those showing learned values for 100 weights, were conducted in 30 µL volume in 384-well
plates. Early experiments used a 20T strand at 1 µM, but we switched to using 0.01% Tween 20
(Sigma-Aldrich) which more effectively prevented strand loss during liquid handling events (Fig. S2).
Fluorescence reads were taken every 2, 4, or 8 minutes. Four fluorophores were used with distinct
excitation and emission wavelengths of 496 nm and 525 nm for ATTO488, 555 nm and 582 nm for
ATTO550, 598 nm and 629 nm for ATTO590, and 639 nm and 669 nm for ATTO647, respectively.

a

inhibited weight (𝑊𝑊1,1
∗ = 1 ×)

fuel (𝑋𝑋𝐹𝐹1 = 1 ×)

reporter (𝑅𝑅𝑅𝑅𝑅𝑅 = 2 ×)

input (𝑋𝑋1 = 3 ×)

activator (𝐴𝐴𝐴𝐴𝐴𝐴1,1)

b
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Fig. S2 | Comparing the effectiveness of Tween 20 and a 20T DNA strand as a passivating agent. a,
Domain-level diagrams of molecules used in the experiments. Standard concentration 1× = 50 nM. b, End-point
fluorescence data of measured output concentration versus activator concentration.

1.7 Multi-step learning experiments

Learning experiments required components to be added in multiple stages for sequentially presenting
the training patterns and for transition from learning to testing. Learning was performed in a master
mix incubated at 25 ◦C. That master mix was then distributed into multiple wells on a plate, one
for each test pattern. The inhibited weights and other molecules in the downstream layers were
also made in a single master mix and distributed. This process allowed for all sample wells to be
filled with the same trained network. Unique test patterns were finally added to each individual
sample well. The volume and concentration of molecules changed when the two master mixes were
combined and the test pattern was added. The reported concentrations for all molecules were
calculated at the final sample volume. Experiments that required training had a sequential learning
master mix at 30% of the final volume, or two parallel learning master mixes each at 30% volume.
The testing master mix volume was also 30%. The remaining 10% was reserved for test patterns.
This means learning always occurred at 3.33× the concentration of the final experiment. Adding
a small volume of training patterns, labels, and label inhibitors changed the learning master mix
volume by approximately 15% in total.
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2 Modeling and simulation

2.1 Activatable weight motif

weight (𝑊𝑊𝑖𝑖,𝑗𝑗)

activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗)

𝑘𝑘h

𝑘𝑘dTj

𝑎𝑎𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝑘𝑘b

𝑘𝑘b′

inhibited weight (𝑊𝑊𝑖𝑖,𝑗𝑗
∗ )

input (𝑋𝑋𝑖𝑖)

𝑥𝑥𝑊𝑊𝑖𝑖,𝑗𝑗𝑋𝑋𝑊𝑊𝑖𝑖,𝑗𝑗

input:weight (𝑋𝑋𝑊𝑊𝑖𝑖)

fuel (𝑋𝑋𝐹𝐹𝑖𝑖)

weight:fuel (𝑊𝑊𝑊𝑊𝑖𝑖)

input (𝑋𝑋𝑖𝑖)

𝑋𝑋𝑋𝑋𝑓𝑓𝑖𝑖 𝑥𝑥𝑊𝑊𝐹𝐹𝑖𝑖

a

b

inhibited weight (𝑊𝑊𝑖𝑖,𝑗𝑗
∗ )

weight (𝑊𝑊𝑖𝑖,𝑗𝑗)

fuel (𝑋𝑋𝐹𝐹𝑖𝑖)

fuel (𝑋𝑋𝐹𝐹𝑖𝑖)

𝑘𝑘l

𝑘𝑘r

𝑘𝑘l

𝑘𝑘r′

weight:fuel (𝑊𝑊𝑊𝑊𝑖𝑖)

intermediate product (𝑃𝑃𝑖𝑖,𝑗𝑗)

𝑊𝑊𝑊𝑊−𝑃𝑃𝑖𝑖,𝑗𝑗

𝑘𝑘h𝑘𝑘dU′

𝑘𝑘b

𝑘𝑘b′′

𝑘𝑘h

𝑘𝑘dT′

𝑘𝑘dU

𝑘𝑘h

𝑘𝑘b

𝑘𝑘b

𝑘𝑘h hybridization 2 × 106 /M/s

𝑘𝑘dT1 dissociation of a 5-nt toehold T1-c1 100 /s

𝑘𝑘dT2 dissociation of a 5-nt toehold T2-c2 20 /s

𝑘𝑘dU dissociation of a 9-nt AT-only toehold U 0.1 /s

𝑘𝑘dU′ dissociation of U at a three-way junction 0.7 /s

𝑘𝑘dT dissociation of a 5-nt toehold T 10 /s

𝑘𝑘dT′ dissociation of T without dangle 20 /s

𝑘𝑘b branch migration 1 /s

𝑘𝑘b′
branch migration that forms 
a 2-nt bulge at initiation

𝑘𝑘e(𝑘𝑘b,−1,2)
= 5 × 10−4 /s

𝑘𝑘b′′
branch migration that breaks an 
additional stacking bond at initiation

0.1 /s

𝑘𝑘l toeless leak 5 /M/s

𝑘𝑘r
reverse of leak initiated with 
a stacking bond 20 /M/s

𝑘𝑘r′ reverse of leak initiated at a 2-nt bulge 𝑘𝑘e(𝑘𝑘l,−1,2)
= 3 × 10−3 /s

intermediate product (𝑃𝑃𝑖𝑖,𝑗𝑗)

𝑘𝑘h

𝑘𝑘dT

c

Fig. S3 | Modeling of the activatable weight motif. a-b, Desired (a) and leak (b) reactions. c, Rate constants.

The forward rate of a reaction with known reverse rate k, a total of l nucleotides gained, and
a bulge loop of size s formed was estimated as follows and applied to derive k

′

b and k
′
r with gas
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constant R = 1.9872 and temperature T = 298.15 K (25 ◦C):

ke(k, l, s) = k × e−
(∆Hbp−T∆Sbp)×l+T∆Sbg(s)

RT

where ∆Hbp (unit: cal per mol) is the average enthalpy of forming a base pair:

∆Hbp = Mean[{−7.6,−7.2,−7.2,−8.5,−8.4,−7.8,−8.2,−10.6,−9.8,−8.0}]× 1000

∆Sbp (unit: cal per K per mol) is the average entropy of forming a base pair:

∆Sbp = Mean[{−21.3,−20.4,−21.3,−22.7,−22.4,−21,−22.2,−27.2,−24.4,−19.9}]

∆Sbg(s) is the entropy of forming a bulge of size s:

∆Sbg(1) = (∆G37,bg(1) + ∆G37,bp)× 1000/310.15

∆Sbg(s) = ∆G37,bg(s)× 1000/310.15

∆G37,bg(s) is the free energy of forming a bulge at 37◦C:

∆G37,bg(s) = {4, 2.9, 3.1, 3.2, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3} for s = 1 to 10

∆G37,bp is the average free energy of forming a base pair at 37◦C:

∆G37,bp = Mean[{−1,−0.88,−0.58,−1.45,−1.44,−1.28,−1.3,−2.17,−2.24,−1.84}]

Thermodynamic parameters for base pairs and bulges are taken from SantaLucia and Hicks.4
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2.2 Learning motif

𝑘𝑘h

𝑘𝑘dLj

𝑘𝑘b

𝑘𝑘bU

input (𝑋𝑋𝑖𝑖)

a

𝑘𝑘h𝑘𝑘dU′

𝑘𝑘bTj

𝑘𝑘b′′

𝑘𝑘h hybridization 2 × 106 /M/s

𝑘𝑘dLj dissociation of a 7-nt toehold Lj 0.1 /s

𝑘𝑘dU′ dissociation of a 9-nt AT-only toehold U at a three-way junction 0.7 /s

𝑘𝑘dTj dissociation of a 7-nt toehold Tj 1 /s

𝑘𝑘dTj′ dissociation of Tj next to a 9-nt Xia hairpin loop 0.5 /s

𝑘𝑘b branch migration 1 /s

𝑘𝑘bU branch migration rate with AT-only sequence at initiation 10 /s

𝑘𝑘b′′ branch migration that breaks an additional stacking bond at initiation 0.1 /s

𝑘𝑘bTj branch migration rate that forms a 7-nt Tj bulge at initiation 𝑘𝑘e 𝑘𝑘b, 0, 7 = 2.5 × 10−3 /s

𝑘𝑘h′ unimolecular hybridization rate that forms a 9-nt Xia hairpin loop 𝑘𝑘h1 9 = 2.2 × 102 /s

𝑘𝑘b

𝑘𝑘b

b

inhibited activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ ) intermediate activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗′ )

label (𝐿𝐿𝑗𝑗)

waste

activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗)

𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝑋𝑋𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗′ 𝑥𝑥𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗′

𝑘𝑘h′

𝑘𝑘dTj′

𝑘𝑘dTj𝑘𝑘h

intermediate waste

Fig. S4 | Modeling of the learning motif. a, Reactions. b, Rate constants.

Unimolecular hybridization rate for closing a hairpin loop of size n: kh1(n) = kh × e−
∆Shp(n)

R ,
where kh = 2 × 106 /M/s is bimolecular hybridization rate, ∆Shp(n) is the entropy of forming a
hairpin loop of size n: ∆Shp(n) = ∆G37,hp(n) × 1000/310.15, where ∆G37,hp(n) is the free energy
of forming the hairpin loop at 37◦C:

∆G37,hp(n) = 6.3 + 2.44×R/1000× 310.15× ln(n/30) for n > 4

and gas constant R = 1.9872. Thermodynamic parameters for hairpin loops are taken from San-
taLucia and Hicks.4
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2.3 Learned weights

a

b c

Fig. S5 | Simulations for learning 100-bit patterns. a, Mass-action kinetics simulations for 24 hours of learning
and simulation-derived endpoint activator concentrations relative to a standard concentration of 1× = 50 nM. b,
Simulation-derived error statistics. c, Distribution chart of errors for learning all six handwritten digits.

12



T

a

e f

a well-formed structure

b a well-formed structurea malformed structure with hairpin

c

d𝐿𝐿1 + 𝐴𝐴𝐴𝐴𝐴𝐴1,1
∗

c*

U*

T1

X1b

X1a

T1*

T1

X1a*

X1b*

U*

X1b*

Fig. S6 | Revised simulations for learning 100-bit patterns based on NUPACK analysis. a, Sequence-
level diagram of a label-bound learning gate and NUPACK analysis of a highlighted region in the structure. The
expected number of unpaired bases in the toehold U∗ is estimated as 7.69 (max = 9 for a 9-nt toehold). b, Example
NUPACK analysis of a malformed structure with a hairpin between the U∗ and X1b∗ domains on the bottom strand
of the learning gate, compared to a well-formed structure without any hairpins. The expected number of paired bases
in the toehold U∗ is estimated as 8.16 and 0 for the malformed and well-formed structures, respectively. c, Expected
number of paired bases in the toehold U∗ for all 100 label-bound learning gates in each of the two memories. d,
Simulation-derived endpoint activator concentrations relative to a standard concentration of 1× = 50 nM, using
reaction rates adjusted based on the NUPACK estimation of the toehold U∗ availability for input binding. e,
Simulation-derived error statistics. f, Distribution chart of errors for learning all six handwritten digits.
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3 DNA implementation design criteria

3.1 Design complexity

We established three design criteria for evaluating the complexity of a DNA implementation.
Criterion 1: The fewer types of molecules the better. In a complex molecular system,

besides the reactions designed to carry out desired functions, undesired spurious reactions are
unavoidable. To understand what kinds of spurious reactions could occur, we typically start with a
pairwise investigation across all types of molecules (each type is commonly referred to as a species),
and expand it to spurious reactions that involve three or more species when necessary. Naturally,
the investigation is simpler and the solutions to mitigate the spurious reactions are easier to find if
there are fewer species.

Criterion 2: The fewer strands per molecule the better. A challenge that limits the
scalability of a molecular system is how well each molecular structure is formed. It is impossible
to achieve perfect stoichiometry when two or more strands are mixed together to assemble into a
single complex, due to errors in DNA concentration measurements and pipetting. It is known that
contaminates from DNA synthesis affects the absorbance at 260 nanometers (A260) in a spectropho-
tometer, further complicating the results of the measurements. PAGE purification of the complexes
can help remove excess strands, as a solution to the stoichiometry problem. However, the yield of
purification depends on the molecular concentration, and thus complexes are typically purified at a
high concentration (for example, 45 micromolar), in some cases allowing for excess strands to bind
to the complex via a complementary toehold or nonspecific hybridization and remain present in
purified samples. With fewer strands, there are fewer ways that excess strands could form spurious
structures and interfere with desired stoichiometry.

Criterion 3: The fewer nucleotides per strand the better. How well each molecular
structure is formed also depends on synthesis errors. Given a success probability p of each nucleotide
attachment in chemically synthesized DNA strands, the expected fraction of full-length product is
p(n−1) for strands with n nucleotides. Truncations in the toehold would slow down the desired
reaction rate, whereas truncations in the branch migration domain near the toehold would speed
up the undesired leak. Purchasing PAGE or HPLC purified strands helps reduce the synthesis
errors, but is cost-prohibitive for constructing complex molecular systems that contain hundreds
to thousands of unique strands, especially consider the many design iterations. Utilizing shorter
strands in a molecular design promotes a larger fraction of full-length products, improving the
system behavior even when all strands are purchased unpurified.

Let us consider five example implementation schemes for the learning reaction Xi +Lj → Acti,j
and evaluate their complexities using the above criteria (Fig. S7). To be consistent, we will use the
same format of activator Acti,j in all examples – it contains three consecutive domains Tj∗, Ai∗, and
T∗. The choice of the format is not important here, as a correct implementation simply requires
the toehold Tj∗ in the activator to be covered when Xi or Lj is absent and otherwise revealed after
both Xi and Lj have reacted with the fuel species.

The first scheme utilizes a general-purpose chemical reaction network implementation.5,6 In
this scheme, both label Lj and input Xi have the same format of a toehold followed by a branch
migration domain. Inhibited activator Act∗i,j is a fuel species that reversibly reacts with the label and
input to produce the activator. Drain Di,j is an additional fuel species that irreversibly consumes a
waste strand from the first reaction and drives the overall reaction pathway forward. The inhibited
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Implementation scheme for 𝑿𝑿𝒊𝒊 + 𝑳𝑳𝒋𝒋 → 𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊,𝒋𝒋
Types of fuel 

molecules
Strands per 

molecule
Nucleotides 

per strand

i 2 3 67

ii 3 2 44

iii 2 2 45

iv 1 3 56

v 1 2 45

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐷𝐷𝑖𝑖,𝑗𝑗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐺𝐺𝑖𝑖,𝑗𝑗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐷𝐷𝑖𝑖,𝑗𝑗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗
𝐷𝐷𝑖𝑖,𝑗𝑗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

Fig. S7 | Design complexity. Five example implementation schemes are compared for reaction Xi +Lj → Acti,j .
Species names in black indicate signal species that appear in the formal chemical reaction. Species names in gray
indicate fuel species designed to facilitate the desired reaction. Types of fuel molecules are counted as the number of
gray species. Strands per molecule are counted as the largest number of strands across all gray species. Nucleotides
per strand are counted as the largest number of nucleotides across all strands in all gray species. For consistency,
product Acti,j consists of a 7-nt Tj∗, a 9-nt Ai∗, and a 7-nt T∗ in all five examples. All toeholds and long domains
contain 7 and 15 nucleotides, respectively, except for Xi in Scheme iv, which is split into two long domains Xia and
Xib that each contains 13 nucleotides.

activator is three-stranded and the drain is two-stranded, making the largest number of strands per
molecule 3. The bottom strand in the inhibited activator is the longest, containing two toeholds
and two long domains besides the activator domains, totaling 67 nucleotides. All three aspects of
the design complexity pose room for improvement.

The second scheme utilizes a reversible version of cooperative hybridization7,8 to implement the
“join” function for Xi and Lj using a two-stranded fuel Gi,j. Upon reacting with the input and
label, two waste products are generated simultaneously, each containing an open toehold Tj or
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Tj∗. One waste proceeds to react with Act∗i,j and release the activator, whereas the other becomes
irreversibly consumed by drain Di,j. Compared to the first scheme, this one has fewer strands per
molecule at the cost of more fuel species. The longest strands are in Gi,j, improved from 67 to 44
nucleotides by moving the activator domains to a sperate fuel species.

The third scheme simplifies the design by utilizing an allosteric toehold.9 In this scheme, the
label consists of two consecutive toeholds, different from the format of the input. Toehold Lj∗
initiates branch migration to open up toehold T∗ on Act∗i,j, allowing for the input to react and
reversibly release the activator. Drain Di,j functions the same as discussed above. Compared to
the first scheme, the bottom strand in the inhibited activator is shortened by one toehold and one
long domain. While the number of fuel species remains the same, improvements are achieved on
the number of strands per molecule and the length of strands.

Reducing the number of fuel species requires embedding irreversibility within the inhibited
activator. One way to accomplish that is shown in the fourth scheme: the top strand is broken
into two strands such that the reverse reaction initiated by the second strand can not complete
branch migration and free up input again once it has become bound to the bottom strand. For
both top strands to be stably bound within the inhibited activator, a longer Xi domain is needed.
This scheme successfully reduces the number of fuel species to the minimum possible, at the cost
of reverting to a three-stranded fuel and increased strand length.

Instead of disrupting branch migration, the reverse reaction could also be inhibited if the toehold
is no longer available. In the last scheme, we inserted Tj∗ domain as a bulge loop into the top strand
of the inhibited activator. Once the top strand is released, the Tj∗ and Tj domains will hybridize to
each other and form a hairpin loop, preventing the Tj toehold from initiating the reverse reaction.
This scheme is arguably the simplest possible on all three aspects of the design complexity – a
single fuel species that contains just two strands, the longer of which has 45 nucleotides, same as
the original allosteric toehold design shown in the third scheme. Further reducing the number of
strands per fuel species to one is possible, but at the cost of more species, longer strands, and more
complex secondary structures.10

The three design criteria for evaluating the complexity of a DNA implementation may seem
straightforward, but the challenge is to decide how much optimization is necessary. For example,
we were initially satisfied with the third scheme that has two double-stranded fuel species, and did
not think that it would be necessary to further simplify the implementation. However, even though
the implementation worked well as a motif for learning, we encountered various problems when the
motif was composed together with other motifs to demonstrate pattern classification using learned
memories (Supplementary Note 4). Critically, every time we applied a design revision in a particular
fuel species to address a problem that we discovered, it caused new problems involving other fuel
species in the system. After extensive investigation, we concluded that the implementation was not
simple enough and we must develop another scheme that uses only a single fuel species, which was
the last scheme discussed above. Pushing the design complexity to the extreme turned out to be
necessary for building a molecular system as complex as the learning DNA neural network reported
in this work (Supplementary Note 5).
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3.2 Reaction specificity

There is a trade-off between design complexity and reaction specificity – long domains allow for
more specificity than toeholds at the cost of increased design complexity.

Let us consider three example implementation schemes for the weight activation reactionActi,j ⇌
Wi,j (Fig. S8). In the first scheme, the activator Acti,j utilizes a universal toehold T, and the combi-
nation of bit information i (which bit in a weight matrix to activate) and class information j (which
weight matrix is the bit in) is encoded in a long domain Aij. It reacts with a three-stranded fuel
species, inhibited weight W ∗

i,j, and reversibly converts it to an active weight Wi,j. This scheme has
excellent specificity, as any nucleotide mismatch in the Aij domain will slow down branch migration
by 10 to 100-fold.11 However, for a neural network with m memories that each contains n bits,
n × m long domains are needed, posing challenges for the scalability of sequence design given a
15-nt domain length or otherwise requiring longer strands.

In the second scheme, the bit and class information are encoded separately in two toeholds, Ai
and Tj, in the activator. The inhibited weight is simplified to a two-stranded complex, and the
number of distinct domains is reduced to n +m. A trade-off of this scheme is reduced specificity.
Even though nucleotide mismatches in the Ai domain will still slow down branch migration, a partial
toehold can be exposed for input binding without requiring the completion of branch migration,
resulting in crosstalk in weight activation (Supplementary Note 4.8). Additionally, designing m
orthogonal toeholds Tj will be challenging when m is large.

Implementation scheme for 𝑨𝑨𝑨𝑨𝑨𝑨𝒊𝒊,𝒋𝒋 ⇌ 𝑾𝑾𝒊𝒊,𝒋𝒋
Types of fuel 

molecules
Strands per 

molecule
Nucleotides 

per strand
Number of 
toeholds

Number of 
long domains

i 1 3 51 1 𝑛𝑛 × 𝑚𝑚

ii 1 2 51 𝑛𝑛 + 𝑚𝑚 0

iii 1 2 68 𝑚𝑚 + 1 𝑛𝑛

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

Fig. S8 | Reaction specificity. Three example implementation schemes are compared for reaction Acti,j ⇌ Wi,j .
Wi,j is an activated weight molecule that participates in downstream reaction Xi + Wi,j → Xi + Pi,j , where Xi

contains a 7-nt T (Scheme i and iii) or Ai (Scheme ii) and a 15-nt Xi domain. Species names in black indicate signal
species that appear in the formal chemical reaction. Species names in gray indicate fuel species designed to facilitate
the desired reaction. Types of fuel molecules is counted as the number of gray species. Strands per molecule is
counted as the largest number of strands across all gray species. Nucleotides per strand is counted as the largest
number of nucleotides across all strands in all gray species. Number of toeholds and long domains are counted within
activator Acti,j , where 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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Considering the desired properties and trade-offs of the above schemes, we established the fol-
lowing criteria for achieving a balance between design complexity and reaction specificity in signals
that contain a combination of information (like activator Acti,j): Encode specificity in long
domains or toeholds based on the number of distinct domains. For example, in DNA
neural networks with a small number of complex memories (n = 100 and m = 2), we encode the
bit specificity in long domains (Ai) and the class specificity in short toeholds (Tj), as shown in the
last scheme in Fig. S8.
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3.3 System-level three-letter code

A three-letter code has been commonly used for minimizing secondary structures in DNA strands.2,12

As G-C base pairs are roughly 5 times stronger than A-T base pairs, by removing G from the
sequence alphabet, no G-C base pairs could form within the same strand, effectively reducing un-
desired secondary structures that affect the kinetics of strand displacement reactions. In addition
to secondary structures within individual strands, undesired spurious bindings could occur between
single-stranded regions on separate molecules. For example, fuel species have open toeholds for
reacting with signal species, and these toeholds have the opposite three-letter code with C removed
from the sequence alphabet. Spurious binding between a signal and a mismatching fuel may involve
G-C base pairs, but is often not a concern due to the short length of the toeholds.

In this work, the use of allosteric toehold9 led us to discover limitations of the simple three-letter
code applied at the individual strand level. As a solution, we extended the three-letter code to be
applied at the system level, defined as follows: All single strands and single-stranded regions
on a double- or multi-stranded species (on the same strand or on different strands but
adjacent to each other) must be non-star domains (As, Ts, and Cs only) or otherwise
no longer than a toehold size, for all initial species, intermediates, and products in
the entire system. Single-stranded regions on wastes can have both star and non-star
domains so long as the region of star domains is no longer than a toehold size.

There are three important features of the system-level three-letter code. First, individual strands
within double- or multi-stranded species do not need to have the same three-letter code across all
domains – star and non-star domains can occur within the same strand so long as the exposed
single-stranded region has only non-star domains or otherwise no longer than a toehold size. We
expect that secondary structures within a strand that has both star and non-star domains will
not cause a problem when the strands are annealed together to form a complex, if the secondary
structures are not too strong to result in kinetics traps during annealing. This rule is necessary to
resolve violations of other aspects of the three-letter code, as we will discuss in an example below.
Second, beyond the initial species in a system, intermediates and products must be considered, as
violations of which will cause the same problems of undesired interactions when the system executes
to process molecular information. Wastes have a different rule because self-occlusion within a waste
is not an issue and only wastes occluding other species should be considered. Third, a single-
stranded region on a double- or multi-stranded species can adopt one of two formats: consecutive
domains on the same strand or adjacent domains on different strands. Violations in either format
will cause undesired occlusions that reduce the effectiveness of a fuel, intermediate, or product.

As an exercise, let us evaluate six example systems shown in Fig. S9. The first example does
not satisfy the three-letter code, because Lj is a single-stranded species that has two consecutive
toeholds of star domains, longer than a single toehold. The consequence of this violation is that
Lj can spuriously bind to other single strands in the system, causing occlusion for both. Occlusion
between Lj and Xi is inevitable due to the complementary toeholds Ai∗ and Ai needed for allosteric
regulation – this occlusion is expected to be highly reversible given the short toehold size. However,
spurious binding between Lj and Fi can be stronger than a short toehold, affecting the availability of
both species for participating in the desired reactions. Similarly, occlusion could also occur between
Lj and the single-stranded domain Pj on W ∗

i,j, affecting the desired function of Lj.
Even if the problem in Lj is not considered, the system still does not satisfy the three-letter code.

In the second example, Lj is removed and Act∗i,j is changed to Act′i,j, which is a simplified version of
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Example DNA strand-displacement system System-level 3-letter code Violations

i 

𝐿𝐿𝑗𝑗 is single stranded and has star 
domains longer than a toehold 
size, allowing it to occlude and be 
occluded by other single strands 
(for example, 𝐹𝐹𝑖𝑖) or single-stranded 
domains on double- or multi-
stranded species (for example, Pj
domain on 𝑊𝑊𝑖𝑖,𝑗𝑗

∗ ) in the system.

ii 

All initial species satisfy the 
system-level 3-letter code, but 
intermediate product from 𝑋𝑋𝑖𝑖
reacting with 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗′ has single-
stranded star domains (Tj* Ai*) 
longer than a toehold size.

iii 
All initial species, intermediates, 
and products satisfy the system-
level 3-letter code except for 𝑋𝑋𝑖𝑖, 
which has both star and non-star 
domains in the same strand. 

iv  No violations. Given U = U*, U 
must be As and Ts only.

v 
Lj and Si* domains are adjacent 
single-stranded non-star and star 
domains on the same double-
stranded species 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ .

vi 
Intermediate product from 𝐿𝐿𝑗𝑗
reacting with 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ has a single-
stranded region with both star and 
non-star domains.

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐹𝐹𝑖𝑖

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗′

𝑋𝑋𝑖𝑖

𝐹𝐹𝑖𝑖

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐹𝐹𝑖𝑖

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝑋𝑋𝑖𝑖

𝐹𝐹𝑖𝑖

𝑊𝑊𝑖𝑖,𝑗𝑗
∗

𝐿𝐿𝑗𝑗 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

𝐿𝐿𝑗𝑗 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗

U = U*

Fig. S9 | System-level three-letter code. Six example DNA strand-displacement systems are evaluated for
whether they each satisfies or violates the system-level three-letter code. For consistency, sequences of all non-star
domains have As, Ts, and Cs only, whereas sequences of all-star domains have As, Ts, and Gs only. Lj, Ai, Tj, T,
U, and Si are toeholds. Xi and Pj are long domains.
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the intermediate species in which Lj is bound and exposed the Ai∗ toehold. In this case, all initial
species satisfy the three-letter code. However, once Xi has reacted with Act′i,j, the two-stranded
product Acti,j will have both Tj∗ and Ai∗ domains exposed, making up a single-stranded region of
star domains longer than a toehold. The violation in this product may give rise to occlusion by Fi

or Pj on W ∗
i,j, preventing it from effectively participating in desired downstream reactions.

To address the problems in Lj and Acti,j, we can convert the star domains to non-star domains,
as shown in the third example. In this case, all four strands in Act∗i,j and W ∗

i,j consist of both
star and non-star domains, which is not a problem because they will each be annealed to form the
desired two-stranded structures. However, a violation in Xi arises – it is a single-stranded species
that has both star and non-star domains. This violation may cause strong secondary structure
within Xi and slow down its reaction with Acti,j.

To address the problem in Xi, we can replace Ai∗ with a universal toehold U, and make the
same change in Lj, as shown in the fourth example. The universal toehold can be designed to be
self-complementary (U = U∗) so that both Lj and Xi satisfy the three-letter code while still being
able to react with Act∗i,j. The self-complementarity determines that U must only contain common
nucleotides between star and non-star domains (As and Ts). In fact, any U domain sequences with
As and Ts only will allow Lj and Xi to satisfy the three-letter code, whether self-complementary
or not. In that case, U on Lj or Xi will be written as U∗, with the knowledge that a two-letter
code domain can be treated as either a star or non-star domain. The two-letter code should only be
applied to universal domains, otherwise sequence design challenges will limit the scalability of the
system. The universal toehold alone works for Lj but not Acti,j, because the latter must encode
both the class j information and the bit i information. This issue can be resolved by an additional
Ai domain between Tj and U. Accordingly, a similar change in W ∗

i,j is needed for it to be activated
by Acti,j. The fourth example now satisfies all aspects of the system-level three-letter code.

Importantly, there does not always exist a solution to satisfy the system-level three-letter code.
For example, if an open toehold is needed at the 5’ end of the bottom strand in Act∗i,j, as shown in
the last two examples, and if it must encode the bit i information, then it violates the three-letter
code no matter it is a star or non-star domain. A star domain (Si∗) adjacent to a non-star domain
(Lj) on the same species may result in occlusion of both domains. Changing Si∗ to Si fixes the
above problem but introduces another problem in the intermediate product – when Lj is bound
to Act∗i,j, both Si and Ai∗ will be exposed, leading to the possibility of strong secondary structure
within the two domains, affecting their ability to participate in downstream reactions.

When the system-level three-letter code cannot be satisfied, more stringent sequence design
criteria can be introduced to allow for a valid implementation. However, this would severely limit
the scalability of the system, as checking all intermediate states of a complex molecular system
becomes unfeasible. Apart from the design complexity issue discussed in Supplementary Note 3.1,
the violation of three-letter code is another main reason that prompted us to switch from Design 1
(Supplementary Note 4) to Design 2 (Supplementary Note 5).
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4 Design 1

4.1 Activatable weight motif

We began with an activatable weight motif that directly utilized an allosteric toehold.9 In this
design (Fig. S10a), a single-stranded activator Acti,j consists of two toehold domains Tj∗ and Xit∗,
encoding the memory identity j and input identity i, respectively. Tj∗ binds to the open toehold
Tj on a double-stranded inhibited weight W ∗

i,j, initiating subsequent branch migration to open the
toehold Xit∗ on W ∗

i,j and converting it to an active weight Wi,j. Input strand Xi then binds to
the open toehold Xit∗ on Wi,j and releases an intermediate product Pi,j that represents the output
of weight multiplication and the input to downstream summation. Fuel strand XFi displaces the
input, freeing it up for reacting with more active weight molecules and resulting in catalytic behavior
where the concentration of Pi,j can be higher than the input concentration. The catalytic behavior
is necessary for implementing weights that are larger than 1.

Compared to the original weight molecule in our previous work of winner-take-all neural net-
works,3 the weight molecule here is extended with a 14-nt double-stranded domain (7-nt Tj and 7-nt
Xit), allowing for it to reversibly switches between an inhibited state where Xit∗ is closed and an
active state where Xit∗ is open, regulated by an activator strand containing an additional toehold
Tj∗. Moreover, unlike the universal toehold T∗ used in the original weight molecule at both the 5’
and 3’ ends of the bottom strand, the toehold Xit∗ here must encode the input identity i so that
each activator strand selectively activates a weight molecule that reacts with a specific input and
produces a specific output, allowing for any desired information obtained from learning to be stored
in the memories represented as a collection of inhibited and activated weight molecules. Encoding
input identities in toeholds has tradeoffs, which will be discussed in Supplementary Note 4.8.

We characterized the behavior of the activatable weight motif using a reporter that directly
reacts with the intermediate product Pi,j (Fig. S10b). The 3’ end of the bottom strand in the
reporter is modified with a fluorophore (F = ATTO590) whereas the 5’ end of the top strand is
modified with a quencher (Q = RQ). The quencher absorbs energy from the fluorophore, resulting
in low fluorescence signal. When the output of weight multiplication (the intermediate product
Pi,j) is produced, it binds to the toehold T∗ on the reporter and releases the quencher-modified
strand, resulting in increased fluorescence signal. When the inhibited weight, fuel, and reporter are
in excess (W ∗

1,1 = XF1 = Rep1 = 2×) and the activator concentration (Act1,1 = 0 to 1×) is no larger
than the input concentration (X1 = 1×), we expect the output concentration to be determined by
the activator concentration (simulations shown as solid trajectories in Fig. S10b). Fluorescence
kinetics data agreed with the simulations within experimental noise (experiments shown as dotted
trajectories in Fig. S10b).

However, when we composed together 8 distinct activatable weight molecules with a downstream
winner-take-all circuit to implement a neural network with two 4-bit activatable memories, two out
of four test patterns failed to be classified correctly (Fig. S10c): the output expected to be on
(Y2 shown in yellow) was barely above the output expected to be off (Y1 shown in dark green)
for the 2nd and 4th tests. Even for the correctly classified patterns, the kinetics was slower than
expected (for example, comparing the experiment with simulation for the 3rd test). We hypothesized
that the unexpected system behavior was caused by the change in Gibbs free energies for the two
toeholds T1 and T2 encoding the memory identities were not sufficiently similar (−8.72 versus
−7.40 kcal/mol as shown in Fig. S10c). To address this issue, we redesigned the second toehold to
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reduce the difference (−8.72 versus −8.26 kcal/mol as shown in Fig. S10d). With this change in
toehold sequence, we observed much improved pattern classification performance in the 4-bit neural
network: clear on-off separations were achieved for all four tests and the kinetics of the experimental
data semiquantitatively agreed with the simulations (Fig. S10d).

To further verify the kinetics of weight activation across memories and inputs, we performed a set
of characterization experiments for each of the inhibited weights used in the 4-bit, 2-memory neural
network (Fig. S10e). Minor differences were observed for distinct inputs within the same memory
(Act1,1 versus Act3,1, and Act2,2 versus Act3,2) and for the same input across distinct memories
(Act3,1 versus Act3,2), within the expected differences due to sequence variations. At this point, we
decided that the differences were acceptable and moved on to the next motif.
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experiments
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weight:fuel (𝑊𝑊𝑊𝑊𝑖𝑖)

Fig. S10 | Activatable weight motif in Design 1. a, DNA strand-displacement implementation for an early
design of an activatable weight motif. In the presence of activators, inhibited weights are activated and input strands
along with excess fuel strands can catalytically produce output strands Pi,j up to the lessor of the activator or
inhibited weight concentration. b, Chemical reaction network implementation and experimental data testing the
performance of a single inhibited weight with a fluorescence reporter. Species names in black indicate signal or gate
species whose concentrations correspond to variable values in the abstract mathematical function. Species names in
gray indicate facilitating species whose concentrations are typically in excess. Initial concentrations of all species and
measured output concentrations are shown as relative concentrations to a standard concentration of 1× = 100 nM.
Fluorescence data are shown in dots and simulations are shown in solid lines. c-d, Fluorescence kinetics experiment
evaluating a 4-bit activatable neural network using activator toeholds with a larger (c) and smaller (d) difference
in the change in Gibbs free energy (∆G, unit: kcal/mol). S1 and S2 shown on each plot indicate the expected
concentrations of the two weighted sum species that determine the position of each input pattern in the weighted
sum space and its classification difficulty. e, Characterization of each of the inhibited weights used in the two
memories of the 4-bit neural network. The rate of output strand produced depends on the concentration of activator
strand as well as on the DNA sequences of the Tj and Xit toeholds.
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4.2 Learning motif

The learning motif also utilized an allosteric toehold (Fig. S11a). A label strand Li,j consisting of two
7-nt toeholds Lj∗ and Xit∗ binds to the open toehold Lj on an inhibited activator Act∗i,j, initiating
branch migration to expose the toehold Xit∗ on the inhibited activator, which in turn allows for
the input strand Xi to bind and displace the top strand in the inhibited activator, uncovering
the toehold Tj∗ and completing the 14-nt single-stranded region Tj∗-Xit∗ for functioning as an
activator for the inhibited weight shown in Fig. S10a. The released top strand in the inhibited
activator becomes bound to the label strand, which is referred to as the intermediate waste. At
this point, the reaction is fully reversible: the intermediate waste can displace the input strand
via toehold exchange,13 and backward branch migration occurs to kick off the label strand. The
reversibility is undesired because any unconsumed label and input strands from a previous round
of training will interfere with subsequent training events. To ensure irreversibly, a double-stranded
drain Di,j was designed to absorb the intermediate waste, producing a three-stranded and a single-
stranded waste molecule. Neither waste has any open toeholds to react with other molecules in
the system, and thus we considered them to be inert. The drain can be modified with a quencher
and a fluorophore to simultaneously function as a reporter that reads out the concentration of the
three-stranded waste, which can be used to infer the concentration of the produced activator.

The learning motif (Fig. S11a) and the activatable weight motif (Fig. S10a) are considered two
types of an activatable seesaw gate, as illustrated in the learning and weight multiplication layers
of the neural network (Fig. 1c). The label strand in the learning motif and the activator strand in
the weight motif have the same format (two consecutive toeholds), both functioning as a regulator
to the seesaw gate. For the purpose of learning, the input strands are identical in both types of
gates, but in general they can be two distinct signals with the same format. The output of the
learning gate is in the format of a regulator, whereas the output of the weight gate has the same
format as the input (a toehold and a branch migration domain), allowing for distinct functions and
composability in a network. The weight gate incorporates a fuel strand for catalysis and signal
amplification, which is not needed for the learning gate but in principle could be incorporated
when the gate is used in other contexts. Similarly, both gates can be designed to be reversible or
irreversible, with or without a drain. The two types of gates can be further generalized into a single
type of activatable seesaw gate with two types of possible outputs and allow for the implementation
of arbitrary chemical reaction networks (Fig. S12).

We experimentally characterized the behavior of the learning motif (Fig. S11b). Data showed
that when the label strand was in excess (L1,1 = 4×), the concentration of the produced activator
(Act1,1) was determined by the input concentration (X1 = 0 to 1×). This mechanism ensures
that the learned weights, which correspond to the produced activators, represent the total inputs
accumulated from all training patterns – a more common bit in the training patterns will result
in a larger weight. We also showed that lower amounts of label below the input concentration
resulted in proportionally reduced activator concentration, whereas a larger excess of label enabled
faster kinetics of activator production while maintaining the same activator concentration set by
the input (Fig. S11c). Variation in kinetics across three distinct inhibited activators (Act∗3,1, Act

∗
2,2,

and Act∗3,2) was likely due to sequences, whereas variation in reaction completion was likely due
to synthesis errors. Notably, Act∗3,2 produced nearly 0.5× of activator when 0.75× of input but no
label was present. This leak cannot be explained by any input-specific (i = 3) or memory-specific
(j = 2) domain sequences alone, because neither Act∗3,1 nor Act∗2,2 had more than 0.1× of leak.
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Fig. S11 | Learning motif in Design 1. a, DNA strand-displacement implementation for an early design of
a learning motif. A drain is used to ensure irreversibility of learning. Optionally, with fluorophore and quencher
modifications on the drain, the learning reaction could be observed and the activator concentration could be inferred.
b, Chemical reaction network implementation of learning, and experimental data testing the performance of a
single inhibited activator with a fluorescence drain. Species names in black indicate signal or gate species whose
concentrations correspond to variable values in the abstract mathematical function.Species names in gray indicate
facilitating species whose concentrations are typically in excess. The analog learned weight corresponds to the input
strand concentration. c, Fluorescence kinetics experiments evaluating learning reaction performance with variable
label strand concentration. Due to sequence variation Act∗3,1 exhibited faster kinetics than Act∗2,2, and Act∗3,2 displayed
strong leak when the input was present but the label was absent. d, Troubleshooting the strong leak reaction by
testing all combinations of learning reactants. All test pathways that show leak are highlighted in blue and have
input in common. e, Analysis of the input and drain sequences used in the experiments shown in d, revealing a
complementary 4-nt region that can serve as a remote toehold to enable branch migration. Avoiding all possible
short complementary regions is prohibitive, so another solution is to add a 2-nt clamp. f, Diagnostic tests confirming
learning reaction performance with the clamped drain for four inhibited activators involved in learning two 4-bit
patterns. Input-drain leak was reduced although not fully eliminated.
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To investigate the source of the leak, we performed experiments with all combinations of
molecules consisting the learning motif (Fig. S11d). The drain D3,2 was present in all these ex-
periments because of its role as a reporter for fluorescence readout. The label L3,2, input X3, and
inhibited activator Act∗3,2 were each either present or absent, resulting in 8 combinations. The data
clearly separated into three groups: highest activator concentration was observed when all three
components were present, indicating desired reaction; lowest activator concentration was observed
when the input was absent, indicating desired background; medium activator concentration was
observed when the input was present, regardless of the other two components, indicating undesired
leak. Taking a closer look at the sequences of the input and the drain (Fig. S11e), we discovered
a 4-nt complementary region between the X3 domain on the input and the open toehold T2∗ on
the drain. This complementary region could function as a remote toehold14 that speeds up the
anticipated toeless strand displacement between the input and the drain.

A possible solution is to introduce more stringent sequence design criteria that eliminate any
complementary regions longer than 3 nucleotides between any input Xi and the open toehold Tj∗
on drain Di,j. This criteria would limit the scalability of the system as the number of inputs
increases. Alternatively, adding a clamp on the drain could slow down the initiation of branch
migration regardless of any complementary regions, providing a simpler solution for mitigating the
observed leak (Fig. S11e). Utilizing the revised drain with a clamp, we evaluated the behavior of
four inhibited activators involved in learning two 4-bit patterns (Fig. S11f). For Act∗3,2, the leak
between input X3 and drain D3,2 was reduced to below 0.2×. Even with a clamp, initiation of
undesired branch migration could still occur from the 3’ end of the X3 domain, explaining the
remaining leak. Nonetheless, clear on-off separations of produced activators were observed for all
four input and label combinations, establishing the basis for a 4-bit learning system.
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4.3 General-purpose implementation of chemical reaction networks
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Fig. S12 | General-purpose implementation of chemical reaction networks using activatable seesaw
gates. a-b, Activatable seesaw gate generalized from the learning motif (a) and the weight motif (b). A two-sided
node indicates a gate that takes inputs on one side, produces outputs on the other side, and is activated by a
regulator that points to the center. A wire indicates a signal, which can be an input, an output, or a regulator.
A wire without an arrowhead indicates a standard signal (for example, X) that consists of a toehold and a branch
migration domain. A wire with an arrowhead indicates a regulator signal (for example, αx) that consists of two
consecutive toeholds, the second of which must be complementary to the toehold on the input for the gate that
it regulates. An output can be a regulator (a) or an input (b) to a downstream gate. c, Activatable seesaw gate
integrating a and b, allowing for two output signals, one of which is a standard signal and the other is a regulator.
d, Implementation of a two-reactant, two-product chemical reaction X + Y ⇌ P +Q using the three types of gates
shown in a-c. Species in black indicate formal signals or intermediates; species in gray indicate fuels that are specific
to this reaction or to a formal signal species in this reaction and held at a constant high concentration. For formal
signals, all reactants and products have the same format, except for history domains, but distinct and independent
sequences indicated by unique domain names. Reactants X and Y are shown in the top box. Five fuel species
in the middle box facilitate the desired reaction, two of which are signals and the other three are gates defined in
(a)-(c). Four products are shown in the bottom box, two of which are wastes and the other two are formal signals P
and Q with history domains. The implementation of a single reaction is verified to be correct using Peppercorn.15

The compilation of multiple reactions using Nuskell16 would fail because history domains on the product species
are reaction specific. To address this problem, a pair of reactions is needed to include the fuels and wastes in both
directions X +Y ⇌ P +Q and P +Q ⇌ X +Y . Alternatively, a standard seesaw gate could be used as a translator
to remove the history domains.
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4.4 Modular drain

To monitor the production of activators during learning, we used drains with fluorophore and
quencher modifications (Fig. S11a). For learning in a 100-bit two-memory neural network, we
would need 100 unique quencher strands and 200 unique fluorophore strands, which becomes cost
prohibitive. We thus investigated a cost-effective approach using a modular drain (Fig. S13a),
similar to the previously developed modular hybridization probes.17,18 Compared to the regular
drain Di,j, the top and bottom strands of the modular drain Mi,j each has an extended region (S6-T
and S25∗, respectively) bound to a complementary strand modified with a fluorophore or a quencher.
The fluorophore and quencher strands are each taken from a standard reporter (Rep6 and Rep25,
respectively), which remain the same for arbitrary Mi,j with distinct Xi and Tj domains. When no
signal is present, the fluorophore and quencher are in close proximity, resulting in low fluorescence.
When a signal containing Xi and Tj domains (for example, drain trigger V1) arrives, it binds to
the open toehold Tj∗ on the modular drain and displaces the top half of the 4-stranded complex,
separating the fluorophore from the quencher and resulting in increased fluorescence. While the
fluorophore and quencher are covalently linked to the regular drain, the extended domains on the
modular drain (colored in gray) function as linkers that non-covalently attach the fluorophore and
quencher to the drain, allowing for hybridization of distinct drains that have common linkers but
varying signal detection regions.

To evaluate how well the fluorescence readout of the modular drain reflects the signal concen-
tration that it absorbs, we measured the fluorescence for 7 signal concentrations between 0 and
1× and 2× excess drain (Fig. S13a). The experiments included four test cases: i) A simple signal
(drain trigger V1) that directly triggers the drain. This is a straightforward test for the perfor-
mance of the drain. ii) An input used in learning and a simplified intermediate activator (Lj and
Xit domains removed from the intermediate activator shown in Fig. S11a), producing the simple
signal. This test simultaneously evaluates the second reaction step in learning and introduces a
competing reaction for the drain after the signal is produced (reverse reaction of the second step).
Because the competing reaction is fully reversible, it is not expected to affect the performance of the
irreversible drain. iii) The input, label, and inhibited activator, producing the intermediate waste in
two steps (Fig. S11a), which is equivalent to the simple signal but extended with double-stranded
Lj and Xit domains. This test incorporates the first and second reaction steps in learning and
evaluates the robustness of the drain when the signal has additional components that are expected
to be nonreactive. iv) A single-stranded signal including the Lj and Xit domains (drain trigger V2).
This test is similar to iii but the learning reaction steps are eliminated, allowing for the robustness
evaluation in isolation, with a small variation that the additional component is single rather than
double-stranded.

Ideal performance of the drain corresponds to a perfect linear fit of fluorescence versus signal
concentration for all 7 data points between 0 and 1×. Near-ideal performance was observed for the
regular drain but not for the modular drain (Fig. S13a). To visualize how the slope of the data
points changes over the signal range, a gray line was fit to each pair of adjacent data points. For
the regular drain Di,j, all gray lines had similar slopes. For the modular drain Mi,j, the slope at low
signal concentration was nearly zero and increased with higher concentration. This phenomenon
occurred even in the simplest test case, suggesting that the modular drain had a thresholding effect
where low concentrations of signal strands were consumed without producing fluorescence. Similar
but not worse phenomena was observed in the other three more complex test cases, suggesting
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Fig. S13 | Experimental challenges using a modular drain. a, Four different reaction pathways were used
to compare the performance of a simple 2-stranded drain and a most cost-effective 4-stranded modular drain. For
each reaction pathway, a range of input concentrations were used to establish a fluorescence-concentration calibration
curve. These curves should be linear over the tested input range. In all four cases the simple 2-strand drain performed
better than the 4-strand modular drain. A colored line (blue or orange) is fit to seven data points outlined with
black over the input range 0–1×. The last data point without a black outline is the result of 4× input activation. b,
Experiments revealing that the concentration of the modular drain was inversely correlated with the amount of signal
loss. The modular drain was annealed with excess fluorophore-modified strand, so all samples were normalized to
have zero initial fluorescence units in order to compare the signal change upon reaction. c, Experiments uncovering
that the modular drains can be reversible and non-specific with respect to the Tj toehold sequence. When just a
single drain is present, only the desired reaction can occur. However, when both drains are present, the trigger strand
can react with both drains. The drains also exhibit undesired reversibly: the fluorescence trends towards a steady
state which favors the drain with a matching toehold, but toehold complementarity is not sufficient for complete
reaction orthogonality in the presence of both drains.

that the learning reaction performed well and despite the thresholding effect the modular drain was
robust enough to handel competing reactions as well as additional components on the signal strand.

To verify that the observation was not due to unexpected molecular defects that led to low
effective concentration of the drain or another reactant, an 8th data point was obtained with 4×
signal concentration to trigger all of the 2× drain (first and fourth test cases) or all of the 1.5×
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intermediate and inhibited activators (second and third test cases). In all cases, the 8th data point
was close to or above the best linear fit for the other 7 data points, indicating that the drain was
indeed in excess. Unlike the regular drain, the 8th data point for the modular drain was consistency
above the best linear fit, agreeing with the thresholding effect discussed above.

To evaluate the cause of the thresholding effect, we repeated the experiments for the third test
case but with a fixed 1× input concentration and varying modular drain concentration from 1.5 to
4.5× (Fig. S13b). Lower fluorescence was observed with a higher drain concentration, suggesting
that a fraction of the drain was consuming the signal without producing fluorescence, as oppose
to a fraction of the signal was unable to react with the drain properly. Naturally, an excess of
the bottom strand in the modular drain could function as a threshold for the signal. However,
this is unlikely because we intentionally added excess of the top strand: the ratio of the bottom,
top, fluorophore, and quencher strands were at 1 : (1 + x) : (1 + 2x) : (1 + x), where x = 0.1
(Fig. S13a) or 0.2 (Fig. S13b). With these annealing ratios, we expected that the only partial
structures were the top:fluorophore complex and the fluorophore and quencher strands. Having the
fluorophore strand in excess was desired to ensure no partial 3-stranded complex. However, it could
also create spurious bindings to signal strands, because it contains long star domains of sequences
with As, Ts, and Gs whereas a signal strand contains long non-star domains of sequences with As,
Ts, and Cs. To address this issue, we added an additional quencher strand with the S6 domain (also
taken from the standard Rep6 reporter) at twice the concentration of the excess fluorophore strand.
With this change, we expected that the excess fluorophore strand to be bound to the additional
quencher strand, resulting in two excess quencher strands that have the same 3-letter code as the
signal strands and are generally expected to not interfere with the system behavior. Given that
the experimental observation did not agree with our expectation, we decided to remove the excess
strands with gel purification.

Furthermore, the fluorescence kinetics exhibited a fast increase followed by a slow decrease,
where a higher drain concentration resulted in a larger decrease (Fig. S13b). This type of kinetics
is commonly seen in reversible reactions where the forward rate is much faster than the backward
rate.19,20 We hypothesized that the reversibility was due to the fluorophore-quencher interaction21

and the blunt-end stacking22 between the 5’ end of the double-stranded S6 domain and the 3’ end of
the double-stranded Xi domain. To reduce this reversibility, we made three changes to the modular
drain design. First, a 1-nt bulge loop was introduced near the center of the Xi domain on the drain.
When the signal reacts with the drain, elimination of the bulge will help drive the reaction forward,
similar to a nucleotide mismatch elimination.20 Second, a 2-nt dangle was introduced between the
fluorophore and the S6∗ domain, weakening the fluorophore-quencher interaction by increasing the
distance between them. Third, a 2-nt spacer was introduced between the S6 and Xi domains on
the top strand, disrupting the stacking bond.

To evaluate the impact of gel purification and the above design changes, we performed an
additional set of experiments with two modular drains that have the same Xi domain but different
Tj toeholds (Fig. S13c). For both pairs of trigger and drain (R2,1 +M2,1 and R2,2 +M2,2), nearly
no slow fluorescence decrease was observed, indicating improved reversibility. However, when each
trigger was allowed to react with both drains, the reversibility issue reappeared, accompanied by
undesired crosstalk between the trigger and the drain with a mismatched toehold. We suspect this
was due to nucleotide truncations on the 5’ end of the top strand in the modular drain, creating a
small toehold for signal invasion even without the Tj toehold. The drain with a mismatched toehold
could then slowly drive the reverse reaction of the trigger and its matching drain.

30



Another phonomania was observed during the first hour of the experiments before any trigger
was added (highlighted in the circled region in Fig. S13c): the fluorescence decreased without any
reaction taking place, presumably due to the excess top:fluorophore complex sticking to the walls of
wells in the plate, reducing the concentration of fluorescent molecules within the light path of the
plate reader. Encouragingly, gel purification of the modular drains removed the initial fluorescence
decrease, suggesting successful removal of the excess top:fluorophore complex. Presumably, the
excess quencher strands were removed as well. With purified drains, the reversibility and crosstalk
were improved, but not enough to meet our standard for a robust building block that can be utilized
in complex systems.

The lesson we learned here was that the modular drain has trade-offs. While providing a cost-
effective approach for fluorescence readout, it is not precise enough for accurately measuring signals
at low concentrations. Moreover, it is not robust enough for avoiding crosstalk in complex systems.
The accuracy issue could be explained by the number of strands in the modular drain: four strands
are involved in the target complex, and as discussed above one more strand is required to inhibit
excess fluorophore strand if gel purification of the complex is not performed. By contrast, only two
strands are involved in the regular drain, and excess top strand can be present without causing
problems. The robustness issue could be explained by the length of strands in the modular drain:
both the top and bottom strands are roughly twice the length of those in the regular drain, leading
to more synthesis errors. In particular, DNA synthesis starts from the 3’ end of a strand, and thus
truncations at the 5’ end become worse with increasing strand length. As discussed above, these
truncations on the top strand in the modular drain could result in undesired crosstalk that allows
a signal with matching Xi domain but mismatching Tj domain to react. Overall, the challenges
with a modular drain once again confirmed our design criteria: the shorter strands, and the fewer
strands per complex, the better.
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4.5 Unreacted drains occluding weight activation

After concluding that the modular drain was not well suited for irreversibly driving the learning
reaction forward while simultaneously reading out the concentration of learned weights (Supplemen-
tary Note 4.4), we returned to the regular two-stranded drain and made a compromise to temporally
skip the readout of leaning and go straight to the integration of learning and testing using “silent
drains” that do not have fluorophore and quencher modifications. In this case, the result of learning
is indirectly reflected in the result of testing: if the activators produced from learning (Fig. S11a)
have desired concentrations that represent the averaged training patterns for each memory, they will
collectively activate a desired selection of weight molecules encoding the learned memories, which
then react with the input strands from a test pattern to perform weight multiplication (Fig. S10a).
Subsequent summation and winner-take-all computation will turn on one of the two outputs read
by a standard fluorescent reporter (Fig. 1c), indicating the classification decision.

Unfortunately, our first attempt of learning and testing with 4-bit patterns failed (Fig. S14a).
We expected output Y1 to turn on for the first and third tests, and output Y2 to turn on for the
second and fourth tests (simulations shown as solid trajectories). Experiments suggested that the
rate of output production was very slow – both outputs essentially remained off for the second and
fourth tests, whereas slightly larger separations between the two outputs were observed for the first
and third tests (experiments shown as dotted trajectories).

To investigate the cause of the slow output production rate, we performed a set of experiments
comparing the full learning and testing system with a subset of the molecules involved using the
third test pattern X = {1, 0, 0, 0} that was supposed to turn on Y1 (Fig. S14b). When only
the required weights (two per memory) and their activators were present (no training, minimal
testing), the network performed the best, showing desired kinetics of output production similar to
the simulation prediction. When all possible weights (four per memory) and the required activators
were present (no training, full testing), the kinetics was slightly slower – this was expected because
activators can be temporally occluded when they bind to inhibited weights that have a matching
Tj toehold but mismatching Xit toehold. When inhibited activators for the unrequired weights
were included (inhibited activators, full testing), the kinetics became faster, presumably due to
leak between inhibited activators and inhibited weights (Supplementary Note xx). However, the
output production turned off when drains from learning were included (drains, full testing), at a
level similar to when all learning components were included (full training, full testing).

The above observation revealed a problem for the integration of leaning and testing: drains
must be in excess to effectively drive the learning reaction forward, and drains for all possible
input and label combinations must be present to enable the learning of arbitrary patterns. Thus,
a large fraction of unreacted drains will be left over after learning, affecting the performance of
testing. To gain a better understanding of how the drains affect testing, we performed a set of
experiments on weight activation using a specific weight and three distinct drains (Fig. S14c). A
drain for a matching input i but mismatching memory j had nearly no impact on the activation
of weight Wi,j (top plot). A drain for both matching input and memory most strongly suppressed
weight activation (middle plot). A drain for a mismatching input but matching memory was almost
as problematic as the fully matched drain (bottom plot). Matching memory means that the Tj∗
toehold on the drain is complementary to the Tj toehold on the inhibited weight. To evaluate
the impact of this toehold, we measured the kinetics of weight activation comparing three distinct
toehold lengths from 7 to 5 nucleotides (Fig. S14d). Reducing the toehold to 6 nucleotides allowed
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Fig. S14 | Evaluating the effect of unreacted drains occluding weight activation. a, Fluorescence kinetics
experiments of 4-bit pattern classification after training. Solid and dotted trajectories indicate simulations and
experiments, respectively. Patterns to the left and right of an arrow indicate input pattern and output classification,
respectively. b, Comparing the full network with a subset of molecules involved in learning and testing, using the
third test pattern in (a). Output trajectories are the fluorescent response of signal Y1 only, which was expected to
go on for all cases. c, Experiments on weight activation using an inhibited weight W ∗

5,1 and three distinct drains
D5,2, D5,1, and D2,1. A standard 1× activation of the inhibited weight is shown in gray. No activator is used as a
negative control shown in blue. A positive control of excess activator and input is shown in orange. d, Experiments
on weight activation comparing three distinct toehold lengths from 7 to 5 nucleotides. The top plot in (d) is the
same as the middle plot in (c). e, Experiments on 4-bit pattern classification in the presence of drains with varying
toehold lengths, using the third test pattern in (a), and sequence-level diagrams of three drains and the inhibited
weight that they occlude. The drains were at 8×. All experiments were performed with 1× = 100 nM.
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for the recovery of weight activation kinetics at low (2 and 4×) drain concentrations (middle plot).
Further reducing the toehold to 5 nucleotides allowed for a similar recovery but even at high (10×)
drain concentrations (bottom plot). High drain concentrations are required for learning interesting
patterns. For example, after learning 100-bit patterns with 20 bits of 1s, the total unreacted drains
will be at 9× for each memory. We thus concluded that a 5-nt toehold on the drain was most
effective for maintaining the desired weight activation kinetics.

Finally, we re-evaluated the testing performance of the 4-bit 2-memory neural network using
drains with varying toehold lengths (Fig. S14e). The two cases without any drains and with drains
that have 7-nt toeholds (abbreviated as “7-nt drains”) were the same as those shown in Fig. S14b
– they represent the desired and undesired behaviors, respectively. When 5-nt drains were present,
the testing performance was nearly as as good as no drains, indicating that the occlusion of weight
activation was minimal (termed “weak occlusion”). When 6-nt drains were present, the half reaction
completion time increased from 4 to 7 hours, indicating a 1.75-fold slowdown in kinetics as a result
of the toehold occlusion on the inhibited weight molecule – we term it as “medium occlusion”
compared to an over 10-fold slowdown in kinetics caused by the “strong occlusion” of the 7-nt
drains. The kinetics difference may not immediately make sense when the toehold sequences are
considered: for example, the 6-nt drain D5,1 has a reduction of an A-T base pair compared to the
7-nt drain, whereas the 5-nt drain has a reduction of a G-C base pair compared to the 6-nt drain.
From these reductions alone, we would expect the difference between the 6-nt and 7-nt drains to be
smaller than that between the 5-nt and 6-nt drains. However, a key issue here is that the binding
between the 7-nt drain and the inhibited weight not only result in a double-stranded Tj toehold
but also two additional stack bonds at the interface with the Xi domain on the drain and the Xit
domain on the inhibited weight. This is why the observed occlusion was so strong despite that we
normally do not expect a 7-nt toehold occlusion to be disruptive for the overall system behavior.
Shortening the toehold from 7 to 6 nucleotides on the drain simultaneously eliminates one of the
stacking bonds, allowing for an effective improvement of the occlusion.

Does using a shorter toehold on the drains provide a good solution to the problem of integrating
learning and testing? Not necessarily. We will move on to discover another major problem in the
next section (Supplementary Note 4.6).
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4.6 Undesired reversibility of learning

An immediate problem that we encountered with the 5-nt drains shown in Fig. S14e was the
undesired reversibility of learning. In a single-bit sequential learning experiment (Fig. S15a), a
pair of inhibited activators Act∗5,1 and Act∗5,2 and a pair of drains D5,1 and D5,1 were present in the
test tube. The designed function is that label L5,1 enables the single-bit training pattern, input
X5, to be stored in memory 1 by selectively producing Act5,1 that will later activator weight W5,1

during testing. After the first round of leaning is completed, inhibitor Inh5,1 binds to and cleans
up any excess label. A new label L5,2 could then enable the same single-bit training pattern to be
stored in memory 2. Experiments showed that input and the first label collectively produced the
desired activator (blue trajectory turning on within the first 2 hours). However, when the inhibitor
was added, the fluorescence signal started to decrease, indicating reduced activator concentration.
Moreover, when the new label was added without any input, undesired production of activator
Act5,2 was observed (orange trajectory turning on after 4.5 hours), suggesting nonspecific learning
in the absence of any training patterns.

We hypothesized that the reserve production of Act5,1 and spurious production of Act5,2 were due
to the reversibility of the 5-nt drains. It is known that fluorophore-quencher interaction increases
the free energy of DNA hybridization, observed as increased melting temperature of fluorophore
and quencher modified double strands when the modifications are adjacent to each other.21 Typ-
ically, this interaction is not a problem in standard fluorescent reporters when they are used to
monitor reactions that are largely irreversible. When used for the readout of reversible reactions, a
sufficiently strong toehold on the reporter or a sufficiently high concentration of the reporter would
allow for minimal impact of the fluorophore-quencher interaction. A strong toehold results in a
large difference in the forward and reverse rate constants, whereas a high reporter concentration
creates a large difference in the reactant and product concentrations, both of which can effectively
drive the reaction forward. In our case, the drains with fluorophore and quencher modifications
had relatively weak 5-nt toeholds (for example, two G’s in the T1∗ toehold on D5,1, as shown in
Fig. S14e), and for cost-saving purposes, were in moderate (2×) rather than large excess.

To verify the reversibly of the drains, we measured the kinetics of toeless strand displacement
initiated by the fluorophore-quencher interaction (Fig. S15b). By comparing simulations with exper-
imental data, we estimated a rate constant of 103.5 /M/s. The rate constant of strand displacement
initiated by the 5-nt toehold T1∗ can be estimated as 104.5 /M/s based on the toehold sequence,
resulting in only a 10-fold difference in the forward and reverse rates of the drain D5,1. Reversibly of
the drains directly lead to the undesired reversibility of learning: the intermediate waste shown in
Fig. S11a will be present at a low concentration (for example, 0.1×), reacting with the activator and
reverting it to intermediate activator while releasing the input strand. The intermediate activator is
not in a stable state and can quickly revert to release the label strand through unimolecular branch
migration. When the label inhibitor is present, it will consume any released label strand and drive
the learning reaction backward. The released input strand then become available to interfere with
subsequent training events – this is why we observed nonspecific learning in the absence of any
training patterns when the second label was added (Fig. S15a).

Two caveats should be considered in estimating the strength of fluorophore-quencher interac-
tion. First, the unmodified strand used in the experiment shown in Fig. S15b was unpurified and
expected to have more truncations compared to the HPLC-purified quencher strand. We annealed
the two-stranded reactant with a 20% excess of the unmodified top strand, hoping that copies of
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Fig. S15 | Undesired reversibility of learning. a, Fluorescence kinetics experiments of training with a single-bit
pattern that can be stored in two memories. Fluorophore- and quencher-modified drains are used to measure the
concentrations of activators produced during learning. Toehold T1∗ and T2∗ on the drains are complementary to
the 5 nucleotides from the 3’ end of the 7-nt toehold T1 and T2 on the inhibited activators. The desired learning
behavior at a lower equilibrium is observed when label and training pattern are added in steps 1 and 2 at t = 0 hour.
In step 3 inhibitor is added at t = 2 hours and a reverse effect of learning is observed. Upon addition of a new label
in step 4 at t = 4.5 hours, fluorescence is produced from D5,2 presumably because input strand X5, which was added
and consumed in step 2 but reversibly recovered in step 3, can participate in the second round of learning along with
the new label. b, Measuring the rate of fluorophore-quencher interaction-initiated strand displacement. A general
scheme for the rate measurement is illustrated (right). For the specific experimental data (left), F = ATTO590 and
Q = RQ. Addition of a quencher strand shows a decrease in fluorescence, indicating strand displacement restoring
the two-stranded drain without the aid of a complementary toehold sequence. Mass-action simulations indicate the
fluorophore-quencher interaction functions similar to a toehold of 3.5 nucleotides. c, Same experiments as in (a) but
using a revised design that includes a mismatched base pair in the inhibited activators. The mismatch is located
at the second nucleotide position from the 5’ end of the X5 domain, indicated as an orange cross and a missing
vertical line. The same nucleotide sequence change was applied to the drains, with a complementary nucleotide on
the bottom strand, indicated as a pair of orange crosses with a vertical line in between. Mismatch elimination shifts
the reaction equilibrium to favor products of learning. Drain reversibility is improved but not eliminated.
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the top strand without truncations will be preferred for binding to the bottom strand at a higher
temperature or otherwise displace copies of the top strand with truncations at a lower temperature.
Nonetheless, we expect the estimated strand displacement rate to be higher than what is purely
enabled by fluorophore-quencher interaction without any truncations involved. Second, we expect
the rate to vary across distinct fluorophore-quencher pairs. For example, the change in melting tem-
peratures of fluorophore and quencher modified double strands exhibited a 2-fold difference across
5 distinct fluorophores.21

To address the reversibility problem, we explored using nucleotide mismatch elimination as a
hidden thermodynamic drive20 for the learning reaction (Fig. S15c). In this design, a mismatch is
introduced in the top strand of the inhibited activators near the 5’ end of the Xi domain. As a result,
the reverse reaction requires a mismatch creation near the beginning of branch migration, which was
shown to have the strongest impact on reducing strand displacement rate compared to all possible
mismatch positions.19,23 To avoid any negative impact on the drain, the same mismatch nucleotide
sequence was used in its top strand whereas the complementary nucleotide sequence was used in
its bottom strand, making sure that no mismatches exist in the drain and the intermediate waste
can react with the drain without any undesired slowdown. Note that further utilizing a mismatch
elimination in the drain is not a good option here, as the 15-nt Xi domain is not long enough for
the thermodynamic drive to be sufficiently hidden and to prevent undesired leak between the input
and the drain. With the mismatch design, we observed a higher reaction completion for the desired
learning behavior (blue trajectory reaching 1× within the first 2 hours), reduced signal decrease
after the inhibitor was added (blue trajectory after 2 hours), as well as reduced nonspecific learning
(orange trajectory after 7 hours).

Does introducing a mismatch on the inhibited activators provide a reasonable solution to the
problem of undesired reversibility in learning and allow for a better integration between learning
and testing? Not necessarily. We will move on to discover yet another major problem in the next
section (Supplementary Note 4.7).
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4.7 Leak at the interface of learning and testing

Like there are unreacted drains from leaning, there are also unreacted inhibited activators from
learning. The introduction of a mismatch on the inhibited activators (Fig. S15c) led to serious leak
in testing (Fig. S16a), where the learned memories were obscured by background noise. Critically,
the Tj∗ toehold on the activator strand is covered up in the inhibited activator, preventing it from
binding to the inhibited weight and faultily activate a bit in the memory without going through
the proper training process. This toehold inhibition is not perfect, because blunt-end stacking22

can provide the energy nearly as strong as a base pair to initiate toeless strand displacement. The
rate of stacking initiated leak between double-stranded gates was measured to be 20 per molar per
second in seesaw logic circuits.2 However, unlike the gate-gate leak in the original seesaw circuits,
the reserve reaction here is a fast unimolecular branch migration, and thus we anticipated the issue
of leak to be less problematic.

Unfortunately, the mismatch on the inhibited activator altered the reserve rate of the leak
reaction (Fig. S16a): there is only one base pair adjacent to the mismatch in the leak product,
which will be highly unstable. When that base pair is open, the reverse rate of branch migration
will be slowed down, similar to the effect of a remote toehold.14 Moreover, because the goal of
training is for the DNA neural network to recognize similar molecular events in future operation,
the format of the input strands used in test patterns is the same as that in training patterns – input
Xi present for testing has a chance to invade the leak product at the mismatch location (indicated
by the gray arrow), converting the inhibited activator to an activator and essentially locking in the
error.

We experimentally measured the leak with varying inhibited activator concentrations (Fig. S16b).
Four distinct weights (W ∗

i,j) that correspond to two bits (i = 2 and 8) in two memories (j = 1 and
2) were compared with each other. The results can be explained by two factors: First, a stronger
stacking energy between the base pair at the 5’ end of the Tj domain on the inhibited activator and
that at the 3’ end of the Xit domain on the inhibited weight (base pair sequences highlighted in
orange) initiates a faster forward reaction for the undesired interaction between the two molecules
and makes the leak worse. Second, a weaker stacking energy between the two adjacent base pairs to
the 3’ side of the mismatch (base pair sequences highlighted in gray) encourages more breathing in
the leak product shown in Fig. S16a, which in turn creates a larger gap for initiating reverse branch
migration, slowing the backward reaction and makes the leak worse. Inhibited activator Act∗8,1 had
the weakest first energy among the four Tj and Xit combinations and the stronger second energy
among the two Xi domains, leading to the least leak (bottom left plot). Conversely, Act∗2,2 had
the strongest first energy and the weaker second energy, leading to the worst leak (top right plot).
Act∗2,1 and Act∗8,2 had energies in between. If only the first energy is considered, Act∗8,2 would have
worse leak than Act∗2,1. However, the second energy suggested the opposite, which agreed with the
experimental observation (top left and bottom right plots), possibly because the difference in the
second energy was larger than the first.

Rather than shortening the toehold in the drain to address the problem of unreacted drains
occluding weight activation (Supplementary Note 4.5), an alternative solution is to introduce a
wobble base pair in that toehold so that occlusion becomes weaker when it binds to the open Tj
toehold on the inhibited weight. This change would require the inhibited activator to adopt a
wobble base pair at the same position in the Tj toehold so that the intermediate waste has a fully
complementary sequence to the altered drain toehold for effectively driving the learning reaction
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dependent on the identity of the Tj toehold and the Xit and Xi sequences. The unit of base stacking free energies is
kcal per mol, and the values are taken from Huguet et al.24 c, Experiments testing the change of leak when a wobble
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39



forward, whereas the activator strand has the original Tj∗ sequence for effective weight activation.
However, the alternative solution made the leak between the inhibited activator and weight even
worse (Fig. S16c). A wobble at position 4 of the T1 toehold, counting from the 3’ end, resulted
in more than twice the amount of leak (blue versus red bars in the bar chart). The leak level was
approaching the level of desired weight activation when the inhibited activator was at 20×. Like
the unreacted drains, a large excess of unreacted inhibited activators is necessary for achieving
interesting and diverse training tasks. Therefore, the observed leak was not acceptable. Naturally,
we considered moving the mismatch in the Xi domain to a more distant position away from the
wobble to reduce the collective effect of the two (sequence-level diagram highlighted in the green
box in Fig. S16c). The wobble itself was moved to position 1 to reduce its impact in favoring the
leak product. These changes resulted in some improvement, but still too much leak to merit a valid
design choice.

At this point, we concluded that despite the simplicity of the weight activation and learning
motifs, we were unable to achieve robust integration of the two for the purpose of demonstrating
molecular pattern classification using learned weights. Minor design changes were insufficient to
address the major issues identified in occlusion (Supplementary Note 4.5), reversibility (Supplemen-
tary Note 4.6), and leak (Supplementary Note 4.7). We will discuss another issue in the crosstalk
of weight activation (Supplementary Note 4.8) in the next section before moving on to redesign the
motifs based on what we have learned so far.

Importantly, the implementation of chemical reaction networks using these two motifs (Fig. S12)
is generally not affected by these issues. Occlusion of a downstream gate caused by unreacted drains
from an upstream reaction is a specific issue for adding irreversibility to the reversible scheme
shown in Fig. S12. When drains are used, undesired reversibility comes from fluorophore-quencher
interaction, which will not be present unless the product of that reaction needs to be monitored.
Leak between an upstream and downstream gate is highly reversible, unless a mismatch is employed
in the upstream gate to address the reversibility issue. The input for a downstream gate locking in
the leak caused by an upstream gate with mismatch is also a very specific case when both gates share
the same input. Overall, the proposed implementation scheme remains valid for future experimental
investigation.
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4.8 Crosstalk in weight activation

In the activatable weight motif (Fig. S10a), each activator Acti,j produced from learning is designed
to activate a specific weight Wi,j. The beauty of the allosteric toehold mechanism9 is how compact
the extension on a gate is for achieving additional control that turns the gate on and off via
the presence and absence of a short signal strand, the activator. In our case, the two toehold
domains Tj∗ and Xit∗ composing the activator are used to encode memory identity j and input
identity i, respectively. Given two memories, only two distinct Tj sequences are needed, which is
straightforward to design. However, 100-bit input patterns require 100 unique Xit sequences. Using
a 3-letter code2,12 for minimizing secondary structures within each signal strand and reducing
spurious interactions between signals, a 7-nt Xit domain has 37 = 2, 187 choices of sequences. This
may seem like a large enough space for designing 100 distinct toeholds. However, consider the
first 4 nucleotides at the 3’ end of Xit, there are only 34 = 81 choices, suggesting that some Xit
domains must share the same sequences within that region. The shared sequence will lead to partial
activation and undesired crosstalk between weights and mismatching activators (Fig. S17a).

Experiments with four weight and activator pairs confirmed the crosstalk issue (Fig. S17b).
When the two weights W ∗

1,1 and W ∗
2,1 were paired with matching activators Act1,1 and Act2,1, re-

spectively, they turned on within 2 hours (top left and bottom right plots). When the activators,
whose sequences have 4 nucleotides in common, were swapped, the weights turned half on within
12 hours (top right and bottom left plots). The kinetics of the experimental data (dotted trajecto-
ries) agreed with the simulations (solid trajectories), suggesting that the crosstalk was well predicted
based on the sequence similarity of the X1t and X2t domains. Experiments further revealed that
the exact crosstalk kinetics differed slightly between W ∗

1,1 + Act2,1 and W ∗
2,1 + Act1,1, presumably

due to the difference in the remaining 3 nucleotides of the Xit toeholds as well as the branch mi-
gration domain Xi sequences. Unsurprisingly, the weight that had a slightly faster kinetics with its
matching activator also had a slightly worse crosstalk (red trajectories in Fig. S17b).

Despite the slight asymmetry in the experimental data, we decided that the number of common
nucleotides on the 3’ end of the Xit domains is a strong indicator for the degree of crosstalk in weight
activation. Analysis of one memory in a 9-bit neural network showed a representative range of
crosstalk (Fig. S17c): All matching activators had 7-nt complementarity with the inhibited weights,
indicated by the yellow pixels on the diagonal. Most off-diagonal pixels are dark blue, indicating
perfect orthogonality. Shades of lighter blue to green indicate 1 to 4-nt partial complementarity.
While it is possible to completely avoid 2 to 4-nt partial complementarity in a 9-bit neural network,
in the best case senecio each activator in a 100-bit neural network will have on average 100/33−1 =
10 weights that it can spuriously activate with 3-nt partial complementarity.

The impact of the crosstalk is not actually as problematic as it appears for two reasons. First,
the crosstalk shown in Fig. S17b was evaluated in isolation rather than in competition with the
desired weight activation as it would be in an activatable memory. All possible inhibited weights
composing the memory will be present, and thus each activator can simultaneously react with a
matching and mismatching weight. The difference in reaction rates will naturally bias the activator
toward the matching weight. The level of crosstalk will be 10 to 100-fold less than what is shown
in Fig. S17b if the desired reaction is 10 to 100-fold faster. Second, the winner-take-all neural
network architecture can tolerate noise reasonably well. A relatively low level of background in the
memories would not affect the classification performance for most patterns. The impact of the noise
is to shift the input pattern to a less ideal position in the weighted sum space, which in some cases
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may result in reduced on-off separation in the output. Simulations confirmed that a 100-bit neural
network with two activatable memories was expected to still perform well when crosstalk in weight
activation was included in the model (Fig. S17d).

Even though we concluded that crosstalk was a relatively minor problem here, we included it in
the considerations for a better design (Supplementary Note 4.9).
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Fig. S17 | Crosstalk in weight activation. a, Domain-level diagrams illustrating two inhibited weights that can
be differentially activated by the same activator strand. Sequences of the Xit domains are given to illustrate shared
nucleotides at the 3’ end, allowing a mismatching activator within the same memory (Acti,j with the same j but
different i) to bind by the Tj∗ toehold and spurious branch migrate to half way open up the Xit∗ toehold on the
inhibited weight. In a 100-bit neural network with strand sequences using a 3-letter alphabet, some bits will share up
to 4 nucleotides of the Xit domain. b, Fluorescence kinetics experiments of the desired on-target weight activation
compared with the undesired off-target weight activation. Experimental data are shown in dots and simulations are
shown in solid lines. In each plot the species concentrations were Acti,j = 1×, Xi = 1×, W ∗

i,j = 2×, and Repj = 2×,
where 1× = 100 nM. c, A matrix showing the possible levels of crosstalk in weight activation. Each of the activators
shares all 7 nucleotides (yellow; maximum strength) with its intended target weight. However, all activators also
have varying strengths of off-target weight activation with between 0 (dark blue) and 4 (green) shared nucleotides. d,
Evaluating the impact of crosstalk by simulations of a 100-bit two-memory neural network, using the type of matrix
in (c) as the basis for modeling the crosstalk. Two activated memories of MNIST digits 6 and 7 are each represented
by a corresponding collection of 20 activators. The test pattern is shown on each plot. A representative set of test
patterns were selected based on their positions in the weighted sum space and their deviations from the memories.

42



4.9 Moving to a better design

We learned an important lesson from extensive rounds of design revisions discussed above (Supple-
mentary Notes 4.1 to 4.8): Identifying challenges one by one and coming up with solutions for each
challenge may lead to limited success. For complex molecular systems, a solution for one problem
could give rise to another problem somewhere else in the system. This phenomenon could further
cascade, and in the worst case scenario, forming a deadlock in a cycle. Realizing the fundamental
failure mode of this debugging strategy, we decided to utilize a different strategy where all chal-
lenges are considered as a whole and solutions are devised to address the entire body of challenges
simultaneously.

We summarized seven problems discovered in Design 1 (Fig. S18, left).
Problem 1: The learning process requires training patterns and their labels to be irreversibly

consumed and activators irreversibly produced during each training event so that no leftover inputs
and labels would interfere with subsequent training and no learned memories would be partially
erased. When drains used in the learning motif are not fully irreversible, errors occur. For example,
the first learned memory have a reduced magnitude compared to the second, and the second learned
memory have a higher background like a shadow from the first.

Problem 2: The ability to learn complex and diverse patterns depends on the total number of
species involved in learning and the ratio of reacted versus unreacted species upon the completion
of training. For example, learning two classes of 100-bit MNIST handwritten digits that each
contains 20 bits of 1s requires 200 inhibited activators and 200 drains, out of which 80% will remain
unreacted. The open toehold Tj∗ on any unreacted drain Di,j from learning a j-th class of memory
allows it to occlude any inhibited weight W ∗

k,j within the same memory. The occlusion significantly
reduces the effectiveness of weight activation and leads to poor testing performance.

Problem 3: Unreacted inhibited activator Act∗i,j from learning can trigger an undesired leak
reaction with inhibited weight W ∗

i,j, initiated by blunt-end base stacking and subsequent branch
migration within both Tj and Xit∗ domains. This leak temporarily activates all weights and allows
input strands in a test pattern to spuriously react with weights that are not in the learned memories.
When a mismatch adjacent to the Tj domain is introduced in the inhibited activator to improve
the irreversibility of learning, the leak becomes severe and leads to poor testing performance.

Problem 4: The activators used to turn on the weights encode both class specificity j and
bit specificity i in short toeholds. This information encoding scheme poses challenges for complex
learning and pattern classification tasks where the number of bits in training and test patterns is
large. Crosstalk in weight activation becomes possible when some activators have shared nucleotide
sequences at the 3’ end of the Xit domain. The crosstalk allows input strands in a test pattern to
react with partially activated weights that are not in the learned memories and leads to reduced
testing performance.

Problem 5: Because toehold Xit is used to encode bit specificity, all input strands have dis-
tinct toeholds for reacting with the weight molecules. The difference in toehold sequences lead to
difference in reaction rates for implementing the weight multiplication function. On the other hand,
the implementation of winner-take-all function requires the weighted sum signals to arrive at the
same time, otherwise whichever signal that arrives first will bypass the annihilator and produce
an output. The rate difference in weight multiplication will favor the inputs that have stronger
toehold sequences, making the corresponding bits more significant in a memory, resulting in biased
classification decision.
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Design 1 Design 2

Design properties

 Distinct toehold (Xit) in input
 Specificity of weight activation 

encoded in toehold (Xit)
 Fast reverse rate in weight activation
 Violation of 3-letter code in activator 

(Tj* + Xit*)
 Bit (𝑖𝑖) and class (𝑗𝑗) information both 

required in label
 Irreversibility of learning provided by a 

separate drain molecule
 No clamp on inhibited weight
 No clamp on inhibited activator

 Universal toehold (U) in input
 Specificity of weight activation encoded in 

branch migration domain (Ai)
 Slower reverse rate (requiring the formation of 

bulge B) in weight activation
 Restored 3-letter code in activator (U* and B* 

use As and Ts only)
 Only class (𝑗𝑗) information required in label
 Irreversibility of learning provided by hairpin 

formation (Tj-Xia-Tj*)
 Clamp on inhibited weight (cj)
 Clamp on inhibited activator (c*)

Problem 1: 
reversibility in learning

Drain is not fully irreversible, resulting in 
errors in subsequent training

Enhanced irreversibility embedded within the 
inhibited activator itself

Problem 2: 
weight occlusion

Open toehold (Tj*) on drain occludes 
toehold (Tj) on inhibited weight 

No drains needed; toehold (Tj) hidden in a bulge 
or a hairpin before or after learning occurs

Problem 3: 
leak between inhibited 
activator and weight

Mismatch introduced to improve drain 
irreversibility results in worse leak No mismatches needed; clamp added

Problem 4: 
weight crosstalk Not enough specificity in Xit Enhanced specificity in Ai

Problem 5: 
weight multiplication rates

Different rates because of distinct 
toehold sequence (Xit) on input.

Similar rates because of universal toehold 
sequence (U) on input

Problem 6: 
activator occlusion 

Violation of 3-letter code leads to 
occlusion between signals Restored 3-letter code reduces occlusion

Problem 7: 
number of label strands

𝑛𝑛 strands for each class label (𝑛𝑛 is the 
number of bits in each memory)

1 strand for each class label regardless of the 
number of bits per memory

input (𝑋𝑋𝑖𝑖)activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗)

inhibited weight (𝑊𝑊𝑖𝑖,𝑗𝑗
∗ )

label (𝐿𝐿𝑖𝑖,𝑗𝑗) drain (𝐷𝐷𝑖𝑖,𝑗𝑗)

inhibited activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ )

activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗) input (𝑋𝑋𝑖𝑖)

inhibited weight (𝑊𝑊𝑖𝑖,𝑗𝑗
∗ )

label (𝐿𝐿𝑗𝑗)

inhibited activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ )

Fig. S18 | Summary of two molecular designs with unique properties and tradeoffs.
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Problem 6: The 3-letter code is used to minimize undesired secondary structures within
molecules and reduce spurious bindings between molecules. Specifically, all single strands and
single-stranded domains longer than a toehold on a double- or multi-stranded complex must con-
tain As, Ts, and Cs only. This rule applies to all initial, intermediate, and final species in the entire
system (Supplementary Note 3.3). For consistency, all non-star domains in our designs contain As,
Ts, and Cs only, and accordingly their complementary star domains contain As, Ts, and Gs only.
The activator strand violates the 3-letter code, because it comprises two consecutive toeholds that
are star domains, longer than a toehold. As a result, all activators can spuriously bind to other
single-stranded non-star domains via G-C base pairs, for example occluding the intermediate prod-
ucts released from weight multiplication or become occluded by the single-stranded Pj domains on
the weights. The former occlusion will contribute to biased classification decision, whereas the lat-
ter will contribute to reduced effectiveness of weight activation, both negatively impact the testing
performance. The label strand also violates the 3-letter code, but the impact is less problematic
because the molecules involved in leaning, the inhibited activators and drains, do not have single-
stranded non-star domains to spuriously bind to the labels. All labels will be consumed during
training and not expected to interfere with testing. Both the label and activator can occlude the
input via hybridization between the Xit∗ and Xit domains. However, this occlusion is unavoidable
given the allosteric toehold mechanism and is not much of a concern when Xit is no longer than 7
nucleotides.

Problem 7: The label strand is supposed to only contain the class information j, providing a
desired output response for each training pattern. However, it contains both Lj∗ and Xit∗ domains,
the latter is required for reacting with the inhibited activator act∗i,j and uncovering the toehold for
input binding. As a result, 100 label strands are needed to represent a desired output response
for arbitrary 100-bit training patterns, and 100 inhibitor strands are needed to consume the excess
label. This complexity introduces undesired cost and potential spurious interactions that reduce
the performance of learning and testing.

With the seven challenges in mind, we came up with two main goals for an improved design.
Goal 1: Develop a learning motif that does not involve a drain but embed irreversibly within

the inhibited activator itself – this would address the first three problems as a whole.
Goal 2: Utilize a universal toehold on the input while introducing a separate branch migration

domain for the activatable weight motif – this would address the last four problems as a whole.
In Design 2 (Fig. S18, right), the inhibited weight incorporates a 9-nt Ai domain. The activator

strand binds to the open Tj∗ toehold, branch migrate through the Ai domain, and further branch
migrate through the universal toehold U∗ and expose it for input binding. Compared to encoding
the bit information in toehold Xit, the longer Ai domain provides a better specificity. The universal
toehold promotes similar reaction rates for weight multiplication across all inputs in a test pattern
and allows for a single label strand that encodes the class information for a training pattern. The
universal toehold also provides a solution for the violation of 3-letter code in Design 1: the sequence
of U can be designed to contain As and Ts only, while the other two domains on the activator strand
can be altered to non-star domains Tj and Ai. In this case, the activator sequence now contains As,
Ts, and Cs only, satisfying the 3-letter code. It is undesired to change the U∗ domain to a U on the
activator, because that would result in a U∗ on the input strand, breaking the 3-letter code again.
Without a universal toehold, it would be impossible to design a large number of distinct toehold
sequences using As and Ts only.

The additional Ai domain in the inhibited weight comes with a cost: the exposure time of the
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toehold U would be reduced as the result of a larger state space for the intermediates in branch
migration before U is reached. The shorter exposure time suggests a slower strand displacement
reaction for weight multiplication. To compensate for this issue, we added a 2-nt bulge B between
the U and Xi domains on the inhibited weight and incorporated its complementary domain B∗ on
the activator. When the activator binds to and reaches the end of the branch migration point on the
inhibited weight, the bulge will be eliminated. Reverse branch migration becomes slower because
it now involves the thermodynamic penalty for the reformation of the bulge, effectively extending
the exposure time of the toehold U.

To remove the drain, we introduced a bulge Tj in the inhibited activator. The waste product of
the learning reaction now folds into a hairpin, covering up the Tj∗ toehold required for the reverse
reaction (Fig. 1c). Even if the hairpin is not entirely stable and can briefly open up to expose
Tj∗, reverse branch migration will be hindered by the reformation of the bulge. We will show in a
later section that the desired irreversibility was achieved (Supplementary Note 5.2). Because the
Tj domain is hidden in a bulge or hairpin, before or after the learning reaction occurs, it cannot
effectively occlude the Tj∗ toehold on the inhibited weight. Furthermore, because the bulge is in
the middle of the Xi domain away from the Tj∗ toehold, it does not worsen the leak between the
inhibited activator and weight. Nonetheless, we added a 2-nt clamp on the inhibited weight to
mitigate the leak. Finally, we suspected that the bulge could promote undesired leak between the
input and the inhibited activator, and thus added a 2-nt clamp on the inhibited activator to provide
a thermodynamic penalty and kinetic barrier for the leak.

Moving to Design 2 was a major decision – it meant that we must throw out three years of work
on Design 1 and start over from scratch. This decision eventually led to a successful demonstration
of learning in DNA-based neural networks. Beyond the science presented in this paper, we cannot
over emphasize the philosophy that all challenges must be considered as a whole and that the most
extraordinary courage is needed at the most desperate time.
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5 Design 2

5.1 Activatable weight motif

The activatable weight motif in Design 2 (Fig. S19a) utilizes an activator strand Acti,j consisting
of four domains: toehold Tj, branch migration domain Ai, universal toehold U∗, and bulge domain
B∗. Tj binds to the open toehold Tj∗ on inhibited weight W ∗

i,j and initiates branch migration
across the Ai and U∗ domains. At the end of branch migration, B∗ binds to and eliminates the
bulge loop B on W ∗

i,j, driving the weight activation forward and allowing for a longer exposure
time of toehold U∗ on the activated weight Wi,j for input Xi to react with. Subsequent weight
multiplication occurs following the same reaction mechanism as in Design 1. Key changes of this
motif in Design 2 include encoding activator bit i information in a longer, branch migration domain
(Ai), allowing for a universal toehold (U) on all input strands. We expect these changes to result in
improved specificity of weight activation, and more uniform reaction rates of weight multiplication
that promote fair competition in the downstream winner-take-all function, at the cost of two more
domains in the activator and the extended part of the weight molecule.

In initial experiments for characterizing the activatable weight motif, we designed the Xi domains
to be 26 nucleotides long (Fig. S19a). The length was determined based on a consideration for the
stability of the learning motif in Design 2 (Fig. S20a): a bulge loop was inserted into the middle of
the Xi domain on the inhibited activator, splitting it into two halves that each must be long enough
(for example, 13 nucleotides) to remain stably bound at an intermediate state of the desired or leak
reaction pathways. We will have more discussions about the impact of the Xi domain length in a
later section (Supplementary Note 5.3), whereas the conclusions that we will draw in this section
does not depend on that length.

As a result of a longer Xi domain and two addition domains Ai∗ and B, the top strand in the
inhibited weight is quite long (70 nucleotides total in Fig. S19a). We asked: is there a benefit to
replace the bulge with a nick using a three-stranded inhibited weight molecule (Fig. S19b, top right
diagram)? Based on the design criteria that we established (Supplementary Note 3.1), the fewer
strands per molecule the better for reducing stoichiometry errors. On the other hand, the fewer
nucleotides per strand the better for reducing synthesis errors. Given the trade-offs, we decided to
investigate both designs and compare their performances on four distinct measures: desired weight
activation, undesired leak within the weight motif, crosstalk in activation, and leak at the interface
of learning and testing.

For evaluating the performance of weight activation, we included designs with a smaller 2-nt
bulge and a larger 5-nt bulge (Fig. S19b). We expected the larger bulge to drive the desired
reaction forward more effectively but also increase the risk of undesired leak. Fluorescence kinetics
experiments showed that the fastest kinetics and highest reaction completion were achieved with
the nick design, due to the irreversibility of the activation step. However, while initial leak at the
beginning of the experiments were similar across three designs, gradual leak in the nick design was
2 to 3 times worse than the 2-nt bulge design when the activator was absent (blue trajectories).
Leak could be initiated by the input or fuel invading at the bulge or nick location, releasing the
intermediate product via toeless strand displacement. The main difference in the leak mechanism
is that the reverse reaction is either unimolecular (bulge design) or bimolecular (nick design). Since
unimolecular reactions are faster at a relatively low concentration (1× = 100 nM), leak is not only
kinetically slow but also thermodynamically unfavored for the bulge design. The design with a
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Toehold Sequence ΔG 
(kcal/mol)

X2t ACTACTC −9.37
X5t CCCTTTC −11.85
X7t CTATACC −10.20
X8t CAACCAA −11.39
U (7 nt) TAAATAA −6.23
U (9 nt) AAAATTAAA −9.59
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𝑊𝑊1,1
∗  with a nick, 𝐴𝐴𝐴𝐴𝐴𝐴1,2 = 0 ×

𝑊𝑊1,1
∗  with a 2-nt bulge, 𝐴𝐴𝐴𝐴𝐴𝐴1,2 = 0 ×
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activator crosstalk with mismatched Tj
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∗  with a nick
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inhibited activator leak

𝑋𝑋1 = 2 ×,𝑊𝑊1,1
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U = 7 nt

𝑋𝑋1 = 2 ×,𝑊𝑊1,1
∗ = 2 ×

input:weight (𝑋𝑋𝑊𝑊𝑖𝑖)

weight:fuel (𝑊𝑊𝑊𝑊𝑖𝑖)

Fig. S19 | Activatable weight motif in Design 2. a, Redesigned DNA strand-displacement implementation of
an activatable weight motif. The design features a branch migration domain Ai for encoding bit i information and
a separate universal toehold U for inputs to react with the activated weights. The redesigned motif also includes a
bulge loop B in order to bias the activation step forward to reveal the universal toehold. b, Fluorescence kinetics
experiments of weight activation, comparing three distinct design choices. The bulge loop was either 2 or 5 nucleotides,
or replaced with a nick resulting in a 3-stranded complex. All trajectories have input, inhibited weight, fuel, and
reporter. In each set of experiments, various amounts of activator were added which control the amount of weight
that becomes active. c, Weight activation experiments with a longer, 9-nt toehold U. In Design 1, each activator
toehold Xit was unique to the bit sequence and varied in strength with a ∆G (change in Gibbs free energy) around -9
to -12 kcal per mol. Design 2 switched to a universal sequence U that contains only As and Ts. To achieve a binding
strength comparable to the previously designed Xit domains, we updated the length of U from 7 to 9 nucleotides. d,
Measuring the crosstalk of weight activation with an activator that has mismatched Tj domain, indicating crosstalk of
the same bit between two memories. e, Measuring leak at the interface of learning and testing. Unreacted inhibited
activators from learning are expected to be present when weight activation is carried out in testing.
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5-nt bulge had slightly better kinetics and reaction completion, but worse leak compared to the
2-nt bulge. We concluded that a larger bulge was not necessary and moved on to compare other
performances between the 2-nt bulge and the nick design.

Given that the universal toehold U in Design 2 is As and Ts only, it is unsurprising that weight
activation was generally slower than Design 1 (Fig. S10). To match the strength of a 7-nt toehold
with average sequences, we updated the design with a 9-nt sequence for U and repeated the weight
activation experiments (Fig. S19c). Indeed, faster kinetics was observed for both the 2-nt bulge and
nick designs, suggesting that the updated toehold strength achieved a balance between undesired
activator-input occlusion and desired input-weight interaction. The nick design remained to exhibit
higher reaction completion (green and orange trajectories) but worse leak (blue trajectories). For
simplicity, fuel was removed in this set of experiments and the observed leak was purely due to the
input invasion.

There are two types of crosstalk in weight activation with an activator Acti,j that has mismatched
i or j – different bits within a memory or the same bit in different memories. In Design 1, we focused
on evaluating the first type of crosstalk (Fig. S17). Here in Design 2, the bit i information is encoded
in Ai and cross activation is only possible if branch migration proceeds through all mismatched
nucleotides within Ai, at the end of which toehold U∗ would be exposed. Considering the kinetic
barrier and thermodynamic penalty, this type of crosstalk is highly unlikely. We thus focused on the
second type of crosstalk for comparing the bulge and nick designs (Fig. S10d). Crosstalk between
memories is possible regardless of the orthogonality of Tj toeholds, because an activator can invade
at the bulge or nick location and branch migrate through the U and Ai domains. Experiments
showed more crosstalk in the nick design, which was measured by the difference between the signal
levels with and without the mismatched activator. Like the leak, the activator crosstalk can be
reversed via a unimolecular reaction in the bulge design before input comes in, but not in the nick
design, providing an explanation for the observed difference.

Finally, we evaluated the leak at the interface of leaning and testing by adding an inhibited
activator with matching i and j (Fig. S10e). While the bulge design maintained a level of leak
similar to that within the weight motif, the nick design became nearly 5 times worse than the
bulge design. This result pushed us to conclude that the nick design was not suitable for the
purpose of creating a learning DNA neural network. We will discuss the mechanism of the interface
leak in a later section (Supplementary Note 5.3). The conclusion here is simply that having a
fast, unimolecular reverse rate helps mitigate leak, which is a unique feature of the two-stranded
inhibited weight design with a bulge. This feature is especially useful when multiple motifs are
integrated together to create a complex molecular system.
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5.2 Learning motif

The learning motif in Design 2 (Fig. S20a) embeds irreversibly within an inhibited activator itself,
eliminating the need of a separate drain. A label strand Lj reversibly binds to the inhibited
activator Act∗i,j, uncovering the toehold U∗ for input binding. Input Xi has the same format as in
the activatable weight motif, participating in both learning and testing. Here, it displaces the top
strand in the inhibited activator and becomes bound to the bottom strand while revealing the Tj
toehold that completes the function of an activator Acti,j whose concentration represents the value
of a learned weight. The irreversibility is designed into two mechanisms: First, the Tj∗ toehold in
the released top strand binds to the Tj domain within the same strand and becomes inhibited in
the stem part of a hairpin, unable to initiate the reverse reaction. The reversibility of the hairpin
formation depends on the strength of Tj and the length of Xia, the loop part of the hairpin – a
longer or stronger Tj makes the hairpin more stable and a longer Xia makes it less stable.4 With
a 7-nt Tj and a 13-nt Xia, NUPACK25 analysis suggests that the hairpin is expected to be closed
with an over 98% probability (single-nucleotide fraying at either end of the double-stranded domain
is excluded). Second, even when the hairpin is open, the reverse reaction is unfavored due to the
entropic cost of a bulge loop formation, which is expected to slow down branch migration by over
150-fold based on NUPACK analysis.

The bulge loop Tj splits the Xi domain in the top strand of the inhibited activator into two sep-
arate domains Xia and Xib (Fig. S20a). In the intermediate activator with a bound label, Xib needs
to be long enough to remain double-stranded, avoiding input crosstalk by partial complementarity
within the Xib domain. Similarly, Xia also needs to be long enough to prevent displacement of the
top strand by a mismatched input, as reverse branch migration is slow due to the bulge loop. In
the initial experiments shown in Fig. S20, we used a 26-nt Xi domain that splits into a 13-nt Xia
and Xib. As one of our design criteria is the fewer nucleotides per stand the better, we asked how
short can Xia and Xib be and showed the impact of these two domain lengths in a later section
when leak was evaluated at the interface of learning and testing (Supplementary Note 5.3).

To observe the process of learning, the inhibited activator can be modified with a fluorophore
and the input with a quencher (Fig. S20a). The fluorophore and quencher will be brought together
in the input-bound activator, resulting in lower fluorescence. We experimentally investigated four
inhibited activator designs, with a Tj bulge or with a nick, and with or without a clamp (Fig. S20b).
Two separate wastes are produced in the nick design, one of which can initiate reserve branch
migration but only within the Xia domain, providing a stronger irreversibility than the bulge if only
branch migration is considered. However, the increased complexity of a three-stranded complex and
the exposed Tj∗ domain in a waste are both undesired. Thus we only used the nick design as a
comparison for evaluating the irreversibility of the bulge design.

The clamp was designed to reduce leak between the input and the inhibited activator when the
label is absent. Without the clamp, fraying at the 5’ end of the bottom strand in the inhibited
activator allows for input invasion via toeless strand displacement. On the other hand, the clamp
increases the state space of branch migration for the label strand and reduces the time that the
toehold U∗ will be fully exposed for input binding.

Experiments suggested that the activator was successfully produced when both label and input
were present for all four designs (Fig. S20b). When an excess of inhibitor Inhj was added to bind to
the label and drive the learning reaction backward, no fluorescence change, expect minor fluctuation
due to instrument noise, was observed in 24 hours. This result proved that the bulge design was as
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inhibited activator (𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗ )
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Fig. S20 | Learning motif in Design 2. a, Redesigned DNA strand-displacement implementation of a learning
motif. Inhibited activators can have a fluorophore label for observing the learning process, which will be quenched
by an input in the produced activator. b, Demonstration of a learning reaction and its irreversibility. Two types
of designs were compared. The first had a bulge loop Tj which disrupts reversible branch migration as well as
forms a hairpin stem. The second design used a nick in the top strand. After adding label (step 1) and input (step
2), inhibitor was added (step 3). The inhibitor was expected to bind to the label and drive the learning reaction
backwards, creating an increase in fluorescence, if the final step of learning is not fully irreversible. At the end of
the experiments, approximately 22 hours after the inhibitor was added, the fluorescence remained unchanged for
both types of designs. We also tested the two types of designs with and without a clamp. The designs with clamps
learned more slowly. c, Measuring input leftover after learning for 0.5, 1, or 1.5 hours. Input patterns leftover due
to incomplete learning will affect subsequent rounds of training as well as the fidelity of the test patterns. After
learning for a given amount of time, weight and reporter molecules were added to observe how much output signal
was produced from remnant input strands. The inclusion of fuel in the weight multiplication reaction caused the
input to react catalytically; without fuel very little output was produced. Learning for longer lessened the amount
of leftover input. d, Evaluating the impact of a threshold for clean up input strands leftover from learning. After
1.5 hours of learning, the leftover input produced 0.5× output in approximately 20 hours when no threshold was
present. With 0.25× of threshold, only 0.1× of output was produced. As desired, this amount of threshold did not
prevent 1× of new input from catalytically releasing output strands from all 1× of the activated weight.
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irreversible as the nick design, supporting the effectiveness of toehold inhibition within a hairpin.
The nick and bulge designs without a clamp had a larger fluorescence change within the first 1.5
hours of the experiments than the designs with a clamp, indicating faster kinetics, which agreed
with the expectation above. Unfortunately, there was a flaw in the experimental design here: we
should have evaluated the input leak by adding the input first before the label. We falsely concluded
that the clamp was not necessary and moved on with the bulge design without clamp to promote
faster kinetics – this mistake caused us a substantial detour. We will discuss how leak within the
learning motif affects the overall performance of a 100-bit two-memory neural network and bring
back the clamp in a later section (Supplementary Note 5.9).

While an inhibitor strand was used to remove excess label after each round of training (Fig. S20a),
input was expected to be fully consumed and not interfering with subsequent training or testing.
However, this assumption is only true if the learning period is long enough to reach reaction comple-
tion, the reaction is fully irreversible, and no input is defective and left unreacted. To complement
the explicit evaluation of reversibility in Fig. S20b and evaluate the other two conditions, we de-
signed another set of experiments to observe leftover input from learning (Fig. S20c). In these
experiments, learning took place when label L1 and input X1 were present to collectively produce
activator Act1,1 for 0.5, 1, or 1.5 hours before inhibitor Inh1 was added to clean up excess label.
After leaning, an inhibited weight molecule W ∗

1,1 was introduced, along with a reporter Rep1 that
detects the product of weight multiplication. The inhibited weight is expected to be activated by
Act1,1 and react with any leftover input from learning. With and without fuel XF1, the leftover
input will produce a signal catalytically or stoichiometrically. Indeed, a small amount of leftover in-
put was detected without fuel and amplified with fuel. The amount was reduced but not eliminated
with a longer period of learning, suggesting unreacted, defective input.

Unsurprisingly, synthesis errors in inputs affect their ability to react with inhibited activators. In
particular, truncations at the 5’ end of an input strand could prevent it from successfully displacing
the top strand in the inhibited activator when the length of the domain that must spontaneously
dissociate becomes too long. This length is 7 nucleotides in Tj plus the number of nucleotide
truncations on the input. On the other hand, the weight molecule has a shorter, 5-nt toehold T. An
input that fails to be consumed in learning could still react with a weight molecule and release an
output signal because of the roughly 100-fold faster dissociation rate at the end of branch migration.

Leftover input from an earlier training pattern adds noise to the next training or test pattern.
The noise is small enough to be neglected in subsequent training because its impact is limited to
stoichiometric reactions, but may cause issues in testing because of the signal amplification process
embedded in weight multiplication. To clean up the undesired noise, we used a threshold molecule
that converts an input to waste (Fig. S20d). After 1.5 hours of learning, the leftover input was
again amplified by the fuel, reaching 0.5× in approximately 20 hours (blue trajectory, a repeat of
the brown trajectory shown in Fig. S20c). By contrast, only 0.1× of signal was produced within the
same time when 0.25× of threshold was introduced (orange trajectory). Importantly, this amount of
threshold did not negatively impact the desired behavior when new input was added after learning
– output was catalytically released to reach a fully triggered signal level of 1× within 2 hours (green
trajectory). We concluded that a threshold helps clean up unreacted input from learning and is
necessary for maintaining the desired testing performance.
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5.3 Impact of domain length on the interface leak

As discussed in Supplementary Notes 5.1 and 5.2, the length of the Xi domain will impact the
performance of learning, testing, and their interface. To explicitly investigate this, we started by
evaluating the impact of this domain length on weight activation, comparing a 26-nt and a 10-
nt Xi (Fig. S21a). With the same amount of activator Act1,1, a higher reaction completion was
observed with the inhibited weight W ∗

1,1 that has a shorter Xi domain (green and blue trajectories).
This observation can be explained by synthesis errors: Both strands in each of the complexes were
ordered unpurified from Integrated DNA Technologies (IDT). We expected more synthesis errors
in longer strands, especially including truncations at the 5’ end of the strands. With a truncated
Pj domain, the released output strand will react with the reporter reversibly. The reversibility will
be further increased by fluorophore-quencher interaction (Fig. S15b), resulting in lower reaction
completion. Moreover, stoichiometry errors can result in excess top strand in the inhibited weight,
functioning as a threshold for the activator. Due to the limited resolution of gel electrophoresis,
PAGE-purification of the annealed complex cannot remove all structures with synthesis errors, but it
helps remove excess strands and substantially truncated structures – this explains the improvement
in reaction completion when the complexes were purified, whereas output produced by the inhibited
weight with a 26-nt Xi remained at a lower signal level compared to that with a 10-nt Xi (red and
orange trajectories).

From the point of synthesis errors, the shorter strands the better. However, other problems
arise when the Xi domain is too short. When a 12-nt Xi domain was used in a 9-bit two-memory
neural network, it exhibited poor pattern classification performance after learning (Fig. S21b) – 7
out of 12 test patterns were classified incorrectly, either as a tie between classes “L” and “T” (both
outputs went on in the 2nd and 3rd tests on the first row and the 5th test on the second row) or
as the opposite class (output Y2 went above Y1 for the first class, “L”, and vice versa, in the in 4th
through 6th tests on the first row and the 6th test on the second row).

We hypothesized that the poor performance was due to leak between the unreacted inhibited
activator from leaning and the inhibited weight required in testing (Fig. S21c), creating high back-
ground noise that diminishes the result of learning. When an input strand Xi in a test pattern is
introduced, it will have an active weight to react with if bit i is present in the learned memory, but
it can also participate in a leak pathway when the weight remains inhibited. As all inhibited acti-
vators Act∗i,j must be present during learning to allow for arbitrary training patterns, unused Act∗i,j
will remain present when testing takes place. The B∗ domain on an inhibited activator can invade
at the bulge B on any inhibited weight and temporarily open the toehold U∗ for input binding.
Subsequent branch migration will reveal the toehold T for the output signal from weight activation
to be detected by a reporter with the Pj domain. However, this leak mechanism is expected to be
highly reversible because the backward reaction is unimolecular. If the bit i and class j information
match between the inhibited activator and the inhibited weight, branch migration initiated at the
bulge will also proceed through the U∗, Ai, and Tj domains. If the Xia domain on the inhibited
activator is short enough to spontaneously dissociate at the end of branch migration, Tj∗ and Tj
on the top strand of the inhibited activator will form a hairpin. The hairpin will prevent reserve
branch migration and allow for the input to displace the top strand and irreversibly convert the
inhibited activator to an activator. Once the activator is produced as a leak product, it will quickly
trigger weight activation, corrupting the learned memories.

To verify the above hypothesis about leak at the interface of learning and testing, we compared
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Fig. S21 | Impact of domain length on leak at the interface of learning and testing. a, Fluorescence
kinetics experiments of weight activation using two distinct domain lengths of Xi. b, Experiments on pattern
classification of a trained 9-bit two-memory neural network using motifs from Design 2. The first column of test
patterns are the same as training patterns “L” and “T”. Pattern corruption – deviation from the learned patterns
– increases for each experiment plot going left to right. Red crosses indicate incorrect classification. Xi domains are
12-nt long. c, Domain-level diagram highlighting the shared domains of all species for evaluating the leak pathway.
d, Experiments measuring the leak with matched and mismatched inhibited activators. e, Experiments evaluating
the leak with a common 15-nt Xi domain but distinct combinations of domain lengths of Xia and Xib. f, Summary
of design choices for leak reduction. g, Experiments on pattern classification of a trained 9-bit two-memory neural
network using revised sequences based on the design criteria in (f). 1× = 100 nM for all experiments.
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inhibited activators with matching and mismatching domains (Fig. S21d). Indeed, for spurious
weight activation in W ∗

1,1, inhibited activator Act∗2,1 with mismatched bit i did not introduce any
background noise compared to the case with no inhibited activators (bottom two trajectories that are
exactly on top of each other). Similarly, inhibited activator Act∗1,2 with mismatched class j resulted
in a very small amount of leak below 0.05× in 20 hours. By contrast, the matching inhibited
activator Act∗1,1 produced a 10-fold higher leak, reaching 0.5× in 20 hours (orange trajectory).

We also investigated how the leak is affected by the strand and complex purity of the inhibited
activator (Fig. S21d). In general, for individual strands ordered from IDT, PAGE is expected to
provide higher purity than HPLC, and both of them are expected to enhance full-length products.26

Surprisingly, in this set of experiments, inhibited activator using HPLC-purified bottom strand
exhibited higher initial leak but lower gradual leak compared to PAGE-purified bottom strand
(green trajectory). The initial leak could be due to excess bottom strand given that the annealed
complex was not further purified. We do not have an explanation for the difference in gradual leak,
except a speculation that the two strands had different qualities due to random noise in the synthesis
process given that they were ordered at different times. PAGE purification of the annealed complex
showed a mild improvement compared to the unpurified complex with PAGE-purified strands (blue
trajectory), even though the two strands were ordered unpurified. This observation is consistent
across a variety of experiments that we have performed, and is the reason that we typically order
unpurified strands if they will be annealed into a complex which will then be PAGE-purified to
remove excess strands and malformed structures.

Taking a closer look at the leak mechanism (Fig. S21c), we further hypothesized that a relatively
short Xi domain can be tolerated if a balance between Xia and Xib domain lengths is achieved to
mitigate the progression of leak. The Xia domain needs to be long enough to reduce the probability
of hairpin formation when Tj∗ on the top strand of the inhibited activator is open due to spurious
branch migration. The U and Xib domains together needs to be long enough so that the top
strand will not spontaneously dissociate from the bottom strand even when the hairpin has formed,
allowing for the possibility of reverse branch migration when the hairpin opens up. Experimental
results supported the hypothesis (Fig. S21e): For a 15-nt Xi domain, the combination of a 9-nt Xia
and a 6-nt Xib resulted in the least amount of leak, below 0.15× in 10 hours (orange trajectory).
A shorter Xia and longer Xib led to roughly twice more leak (blue trajectory) and a longer Xia and
shorter Xib led to over three times more leak (red trajectory). PAGE purification of the inhibited
activator complex helped further reduce the leak to roughly 0.1× in 10 hours (green trajectory).

We summarized the design choices in Fig. S21f. The Tj bulge loop could slide to the left or
right within the Xi domain if adjacent nucleotides matched the sequences at the 5’ or 3’ end of the
bulge. This sliding would shorten Xib or Xia, respectively. Given the importance of both domain
lengths, we designed all Xi domains to have specific nucleotide sequences adjacent to the bulge that
lock it in place. With these design criteria, the 9-bit two-memory neural network exhibited much
improved pattern classification performance after learning (Fig. S21g) – all 12 test patterns were
correctly classified with a clear on-off separation.
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5.4 Scaling up to a 100-bit learning neural network

With a successful demonstration of 9-bit pattern classification after supervised learning (Fig. S21g),
we moved on to scale up the system for learning 100-bit MNIST handwritten digits (Figs. S22a-c).

A hundred training patterns per class were randomly selected from the database and the cor-
respondingly DNA strands were used as a single mixture. This training procedure presents all
patterns of the same class at once, conceptually similar to the batch training technique used in
machine learning. In the mixture of training patterns, the 20 most common bits (top 20 bits with
the largest analog values in the averaged training patterns) were preserved whereas the less signif-
icant bits were omitted – this can be viewed as a manual pruning step done by a human teacher,
which is undesired for autonomous learning within the DNA neural network itself. In preliminary
experiments, this non-ideal yet simple procedure allowed us to compare the performance of a learn-
ing neural network with that of a neural network carrying out pattern classification after in silico
training shown in our prior work,3 where the 20 most common bits were used as weights. We will
discuss an alternative learning procedure that avoids the manual pruning step in a later section
(Supplementary Note 5.12).

A representative set of six test patterns per class was selected based on their positions in the
weighted sum space – farther from the diagonal line (equal weighted sums, s1 = s2) is easier to
classify and closer is harder. Test patterns within a 20% margin of the diagonal line (|s1−s2| ≤ 0.2)
were excluded – they were determined to be theoretically classifiable but experimentally unfeasible.
Test patterns outside of the 20% margin were divided into six uniformly distributed areas and one
test pattern per area was randomly chosen. Additionally, each mixture of training patterns was
converted into a binary pattern and used as a reference test pattern for each class. If the training
patterns are successfully learned into a memory, one of the two weighted sums for the reference test
pattern should reach the maximum value 1, resulting in the largest distance to the diagonal line
among all test patterns.

We trained the neural network with three distinct pairs of 100-bit MNIST digits in three separate
learning procedures (Figs. S22a-c). In all cases, a strong bias was observed in the second learned
memory – test patterns in the second class (digits “1”, “4”, and “7”) were classified correctly with
clear on-off separation between the two outputs, whereas test patterns in the first class (digits “0”,
“3”, and “6”) were poorly or incorrectly classified with a small difference between the two outputs.

To investigate the source of the bias, we performed five sets of diagnosis experiments using two
test patterns per class including the reference tests “6” and “7” (Figs. S22d-h). First, we asked: did
the second set of training patterns leaked into the first learned memory? To answer this question,
we performed a parallel learning procedure where the two classes of training patterns were presented
to the DNA neural network in two separate test tubes, and the learned memories were combined
after training. With this procedure, the impact of the order of training was removed. A mild
improvement was observed but the bias largely remained (Fig. S22d), suggesting that the order of
training did not play a major role in creating the bias.

Second, we asked: was the bias introduced by learning or did it already exist in pattern classifi-
cation with activatable memories? Experimental data showed that when the learning process was
removed and a set of activator strands were directly given to the DNA neural network, a more sig-
nificant improvement was observed (Fig. S22e), suggesting that some molecules involved in learning
were major contributors to the bias observed in testing. However, bias also existed in the activatable
memories alone, because the second test pattern in class “6” was farther away from the diagonal
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Fig. S22 | Scaling up to a 100-bit learning neural network. a-c, Fluorescence kinetics experiments of testing
a 100-bit neural network after trained with MNIST handwritten digits “0” and “1” (a), “3” and “4” (b), or “6” and
“7” (c). Two memories were learned sequentially, at 1× = 100 nM, with 0.25× threshold for cleaning up leftover
inputs from learning, and with all 100 inhibited weights present for testing. d-h, Diagnosis experiments comparing
sequential and parallel learning (d), learned and activated memories (e), higher and lower concentration (f), with
and without threshold (g), or a full set and subset of inhibited weights (h). Bar charts show the difference between
two outputs at 12 hours for each test pattern in the diagnosis experiment (darker colors) compared to that in the
original experiment shown in c (d-e, lighter colors) or the earlier diagnosis experiment shown in e (f-h, lighter colors).
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line in the weighted sum space than the second test pattern in class “7” and was expected to show
a larger on-off separation between the two outputs, disagreeing with the experimental observation.

The next three sets of diagnosis experiments focused on the activatable memories without learn-
ing and were compared to the results shown in Fig. S22e. We previously identified that a challenge
for scaling up DNA strand-displacement circuits was spurious binding that led to toehold occlusion
and proposed using a lower concentration to reduce the spurious binding at the cost of slower com-
putation (Supplementary Note S15.1 in Qian and Winfree, Science, 20112). Here, to evaluate the
impact of concentration, we repeated the experiments in Fig. S22e but at half the concentration
(Fig. S22f). The results were roughly the same, indicating that the desired reactions did not slow
down at a lower concentration, presumably due to reduced toehold occlusion. Even though the
overall performance was similar, we decided that a lower concentration helps save materials and
reduce labor for in-house PAGE purification of annealed complexes and thus is preferred for future
experiments.

In an earlier section (Supplementary Note 5.2) we measured the amount of input leftover from
learning and used a threshold molecule to clean up each unreacted input strand. Here, we sought to
evaluate if the threshold molecules introduced any undesired crosstalk or occlusion that affected the
testing performance (Fig. S22g). The results were roughly the same with and without the threshold
molecules, suggesting that they did not contribute to the observed bias in pattern classification.

Finally, we simplified the activatable memories by using a subset of the inhibited weights that
corresponded to just the 20 bits that were supposed to be activated in each memory (Fig. S22h).
Eliminating the 80 unused inhibited weights led to desired performance of pattern classification
where both test patterns in class “6” showed increased on-off separation between the two outputs,
whereas the outputs for both test patterns in class “7” remained roughly unchanged, indicating
that the bias was fully corrected. This result suggested that the unused inhibited weights were not
fully inhibited and spurious activation in one memory was more severe than that in the other.

Together, the five sets of diagnosis experiments led us to conclude that undesired interactions
occurred both in learning and in testing – they collectively impacted the performance of pattern
classification after training. To investigate further, we will take a closer look at the learning mo-
tif, the activatable weight motif, and their integration in the next three sections (Supplementary
Notes 5.5 through 5.7), particularly considering the roles of unused molecules including inhibited
activators and inhibited weights.
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5.5 Label occlusion

Only a small fraction of the inhibited activators will react with inputs from a training pattern and
the rest will be unused for any specific learning event. For example, 80% of the inhibited activators
are unused for learning a 100-bit MNIST handwritten digit that has 20 1s. Thus it is important to
understand how the unused inhibited activators impact the system behavior. As shown in Fig. S23a,
a label strand L1 encoding the class 1 information will react with all inhibited activators for the
correspondingly memory 1 (Act∗i,1, ∀i) regardless of whether the input Xi is present. This aspect
of the design suggests that the presence of unused inhibited activators is expected to cause label
occlusion. To evaluate the degree of occlusion, we designed a set of experiments where a learning
reaction takes place to store a 1-bit pattern X5 into a 4-bit memory 1 consisting of four inhibited
activators Act∗1,1, Act

∗
3,1, Act

∗
5,1, and Act∗7,1. In these experiments, we investigated three distinct

versions of the label strand L1 where the toehold U∗ was truncated by 0, 1, and 2 nucleotides,
respectively.

The full length label was expected to experience the strongest occlusion (longest time in a
temporary state bound to Act∗1,1, Act

∗
3,1, or Act

∗
7,1), whereas occlusion of the truncated labels were

expected to be weaker. A partially opened U∗ domain on Act∗5,1 can still allow for the input strand
X5 to react with, and thus all three versions of the label were expected to participate in the desired
learning reaction and become irreversibly bound to the top strand in the produced activator Act5,1.
On the other hand, the kinetics of learning may or may not be affected by the U∗ domain length:
a shorter U∗ on the label has a weaker binding to the toehold U on the input, resulting in less
input occlusion; but it also exposes a shorter toehold on the inhibited activator, leading to slower
strand displacement – the impact of the two could balance out, in which case the truncation will
mainly affect just the strength of occlusion. For all three versions, at any given time the fraction
of label strand participating in the learning reaction depends on the ratio of inhibited activators
with and without a corresponding input. If the reverse rate of label occlusion is sufficiently fast,
the presence of unused inhibited activators should only slow down the learning reaction but not
alter the steady-state concentration of the product. Conversely, the steady-state concentration will
depend on the ratio of the inhibited activators.

Experiments showed that the latter scenario was true (Fig. S23b). The presence of unused
inhibited activators (3× total concentration of Act∗1,1, Act

∗
3,1, and Act∗7,1) significantly affected the

performance of learning. The produced activator Act5,1 concentration (inferred by the decrease in
inhibited activator Act∗5,1 concentration) was reduced by roughly 50% (middle three trajectories)
compared to when the unused inhibited activators were absent (bottom orange trajectory). This
result suggested that the reverse rate of label occlusion was very slow. A possible explanation is
that the Xib domain has been shortened to 6 nucleotides to reduce synthesis errors and improve
strand quality in both the learning motif and activatable weight motif (Supplementary Note 5.3).
When the label is bound to an inhibited activator, the Xib domain could spontaneously dissociate,
slowing down the reserve rate. In particular, intramolecular spurious binding between the U∗ and
Xib∗ domains (Extended Data Fig. ??b) could significantly impact the reserve rate. In this case,
three quarters of the label strand will be strongly occluded by the unused inhibited activators and
only one quarter will effectively participate in the learning reaction. With 0.5× input and 0.25×
effective label, activator can be produced at half the amount of the input, agreeing with the observed
50% decrease in Act5,1 production.

A solution to the problem of label occlusion is to increase the label concentration to be above
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∗

Fig. S23 | Unused inhibited activators occluding the label for learning. a, Domain-level diagrams of species
involved in learning a 1-bit pattern into a 4-bit memory. Three choices for the label strand L1 are shown with a 7, 8,
or 9-nt universal toeholds U∗. Input X5 has a quencher and inhibited activator Act∗5,1 has a fluorophore. Decrease
in fluorescence indicates reduced concentration of Act∗5,1 and increased concentration of produced activator Act5,1.
b-d, Fluorescence kinetics experiments quantifying the effect of label occlusion with varying concentrations of unused
inhibited activators and label at 3× and 1× (b), 3× and 4× (c), or 10× and 12× (d), respectively. Here, Act∗i,1
is a mixture of Act∗1,1, Act∗3,1, and Act∗7,1 at equal concentrations. Data in all three plots was normalized using a
common positive and negative control: average of the first 5 data points in a sample with no label (blue trajectory)
provided a baseline for no learning and was used as a reference for Act∗5,1 = 1×; average of the last 5 data points in
a sample with 3× excess label and 2.5× excess input (not shown here) resulted in a fully triggered learning reaction
and was used as a reference for fully consumed Act∗5,1 = 0×. Standard concentration 1× = 100 nM. Note that the
produced activator was expected to be determined by the input concentration of 0.5×, but observed to be higher
at roughly 0.7×. This difference was due to the inaccuracy of nominal concentrations of the fluorophore-labeled
inhibited activator Act∗5,1 and quencher-labeled input X5 – because 1× in the plots was determined by the effective
concentration of Act∗5,1, it can be lower than the effective concentration of 1× input.

the total concentration of unused inhibited activators. With 4× label, the desired learning behavior
was restored, achieving a full production level of activator Act5,1 (Fig. S23c). Unsurprisingly, the
kinetics also became faster with a higher label concentration. Scaling up from 4-bit to 100-bit
memories requires a larger ratio of unused and used inhibited activators. Experiments showed that
increased total concentration of unused inhibited activators was not an issue as long as the label
concentration was also increased accordingly (Fig. S23d).

Besides occlusion, another type of undesired behavior that unused molecules can do is generating
leak, which also becomes worse with increased complexity of the neural network. In the next section
(Supplementary Note 5.6), we will explore adjusted annealing ratio as a method to reduce synthesis
errors and thus leak in annealed complexes, including inhibited weights and inhibited activators.
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5.6 Annealing ratio and complex purity

Annealing ratio is expected to have an impact on complex purity because of the competition between
strands in hybridization. For example, if an inhibited weight moleculeW ∗

i,j is annealed with an excess
bottom strand, binding between a top strand and a full-length bottom strand will be preferred over
truncated bottom strand. Even if the inhibited weight has formed with a truncated bottom strand
at a higher temperature during annealing, an unbound full-length bottom strand can still displace
the truncated strand at a lower temperature. As truncations occur near the 5’ end of the strand,
they may lead to a population of inhibited weight molecules that have the clamp (cj) missing or
even part of the Ai∗ domain uncovered. This population of molecules would react with an inhibited
activator Act∗i,j and produce undesired leak of an output signal without learning, and adjusting
the annealing ratio would help reduce the leak. Importantly, the annealed complex will be PAGE-
purified to remove any excess strands, ensuring that no unbound bottom strands are present to
function as a threshold for the input or occlude other signals in the system.

Experiments showed that after PAGE purification, an inhibited weight W ∗
1,2 annealed with a

20% excess bottom strand performed similarly to one annealed with equal amounts of the top
and bottom strands for desired weight activation (Fig. S24a), while the undesired leak with Act∗1,2
was reduced from 0.28× to 0.16× in 15 hours (Fig. S24b). The same set of molecules were used
in both sets of experiments, except that the activator Act1,2 in Fig. S24a was replaced by one of
the four inhibited activators in Fig. S24b. Act∗1,2 was expected to produce the highest amount of
leak, because it has both a matching toehold T2 and a matching branch migration domain A1 to
spuriously activate the inhibited weight W ∗

1,2 when synthesis errors are present in both molecules.
Act∗1,1 was expected to produce less leak, because it has a matching branch migration domain but a
mismatching toehold, resulting in an increased barrier for spurious activation. Act∗3,2 and Act∗3,1 were
expected to produce the lowest amount of leak, because they have a mismatching branch migration
domain, inhibiting the progression of spurious activation. Experimental observations agreed with
the expectations, and showed that leak was reduced in all four cases when a 20% excess bottom
strand was used in annealing the inhibited weight before it was PAGE-purified.

Determining the annealing ratio for the inhibited activator was trickier. An excess top strand
would reduce truncations within Tj∗ on the 5’ end of the top strand in the annealed Act∗i,j, which
helps reduce leak between the inhibited activator and inhibited weight. An excess bottom strand
would reduce truncations within U∗ on the 5’ end of the bottom strand, which promotes faster
learning. At first, we thought an excess top strand was a better choice because the benefit of leak
reduction would be more important than the speed of learning. However, experiments showed that
an unused activator annealed with a 20% excess top strand led to severe label occlusion, almost
indistinguishable from the negative control with no labels (Fig. S24c). This result was surprising
because we expected that PAGE purification would have removed any unbound top strands and
they should not have been present to bind to and inhibit the label strand.

Upon a closer examination of the design, we realized that the excess top strand in Act∗i,j could
bind to the inhibited activator complex via hybridization between the open U and U∗ domains.
Any partial sequence complementarity between the Lj and Ai domains as well as that between the
Xib and B∗ domains would enhance the undesired binding. At a high concentration used in PAGE
purification (for example, 45 µM), the undesired binding could be favored. With a large amount of
sample (for example, 150 µL per well) loaded onto a gel, separation between the desired two-stranded
complex and undesired three-stranded complex could be insufficient, and the sample extracted from
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the gel could have included the undesired complex. As a lower concentration (1× = 100 nM in
Fig. S24c), the excess top strand would dissociate from the inhibited activator and bind to the label
strand instead. This hypothesis was supported by the appearance of samples on a purification gel
(Fig. S24c, bottom right gel image): Act∗1,1 annealed with a 20% excess top strand (1.2:1) showed
a smear (highlighted in the orange zone) larger than the expected size of the complex (blue zone),
and no band corresponding to the excess top strand was observed on the gel.

Apart from the unexpected label occlusion, the expected leak reduction was observed for an
inhibited activator annealed with excess top strand (Fig. S24d). Compared to the same inhibited
activator annealed with excess bottom strand, the initial leak decreased from 0.05× to 0.02×,
whereas the gradual leak remained similar, consistent with the hypothesis of reduced synthesis
errors and improved complex purity. Given the tradeoff between label occlusion and leak, we
decided that for the inhibited activator neither strand in excess was desired, and opted for a 1:1.05
ratio of annealing in later experiments. The slight excess of bottom strand was used to account for
the inaccuracy in stoichiometry.
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Fig. S24 | Annealing ratio and complex purity. a, Comparing the performance of an inhibited weight annealed
with a top to bottom strand ratio of 1:1 or 1:1.2. b, Comparing spurious activation leak between inhibited activators
and the inhibited weight annealed with distinct strand ratios. c, Comparing annealing ratios for an unused inhibited
activator present in learning. An image of a purification gel is shown with a blue and orange zone highlighting the
expected and unexpected annealing product, respectively. d, Comparing inhibited activator annealing ratios for leak
with an inhibited weight. All two-stranded complexes were PAGE purified after annealed. 1× = 100 nM.
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5.7 Effectiveness of fuel

Besides occluding labels, unused inhibited activators could also occlude inputs by temporarily cov-
ering up the toehold U. This occlusion would reduce the effective concentration of the inputs and
possibly affect computation within the weight multiplication layer of the neural network. A fuel
strand is used in weight multiplication so that if the input signal is below the activated weight, the
output can still be catalytically produced to reach the desired value of weighted input. To evaluate
whether input occlusion is a problem, we investigated the effectiveness of the fuel.

The fuel strand has a toehold T for initiating strand displacement that releases the input strand
after it has displaced the top strand from the inhibited weight, allowing a single copy of the input
to react with multiple copies of the weight molecule. In our previous work on creating DNA neural
networks for molecular pattern classification but not learning,3 a common 5-nucleotide toehold T
was used in all signals including input and fuel. Here, for creating a learning DNA neural network,
the weight molecules must be initially inhibited and only become selectively activated upon training.
The weight activation mechanism reversely exposes a toehold U∗ for input binding, and this toehold
needs to be strong enough for weight multiplication to effectively proceed. Moreover, because of the
system-level three-letter code requirement (Supplementary Note 3.3), U is composed of As and Ts
only and its length was chosen to be 9 nucleotides to match the strength of an average 7-nt toehold
with As, Ts, and Cs (Fig. S19c).

The imbalanced strengths of input toehold U and fuel toehold T led to a problem (Fig. S25a,
left plot): the observed kinetics of output production was divided into a fast stoichiometric phase
and a slow catalytic phase. Output signal quickly reached the level of the input signal (0.2, 0.4,
or 0.6×) within the first couple of data points and then slowly increased by roughly 0.3× over 2
hours. This result suggested that the fuel was unable to effectively release the input and drive the
output production. By contrast, a stronger 7-nt toehold T on the fuel restored the desired catalytic
behavior (Fig. S25a, right plot), where output reached roughly 1× reaction completion within one
hour for all three input concentrations above zero. Here, the stronger toehold was achieved by a
2-nt extension at the 3’ end of the bottom strand in the inhibited weight that covers up the last
two nucleotides of the P domain and a complementary extension at the 5’ end of the fuel.

The speed of weight multiplication is expected to have an important impact on the pattern
classification performance of the DNA neural network for the following reason. The winner-take-all
function is implemented using pairwise annihilation followed by signal amplification, and the desired
order of the two reactions is enabled by the difference of the two reaction rates – stronger toeholds
are used on the annihilators and weaker toeholds on the amplification gates. However, a limitation
of the implementation is that the annihilation reaction is trimolecular, which results in reduced
rate difference when the two competing signals are both at low concentrations. Slower weight
multiplication means slower production of the two competing weighted sum signals, which makes
annihilation less effective. A larger fraction of the losing signal may bypass the annihilator and get
amplified, leading to reduced on-off separation between output signals and thus worse performance
in pattern classification.

Making weight multiplication faster by revising the toehold on the fuel would require revisions
of the downstream network components. Instead, we decided to compensate the ineffectiveness of
fuel by a higher input concentration. This method sets the input concentration above the activated
weight and eliminates the need for catalytic behavior – it is not a good solution but an acceptable
one here, given the goal of this work is to demonstrate learning. In future work, the fuel strands can
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be redesigned to have a longer common toehold and the change can be propagated to downstream
network components, enabling more robust pattern classification after learning, where test patterns
with a wide range of input concentrations can be effectively classified, even when the inputs are
occluded by unused inhibited activators.

With a higher input concentration, experiments showed consistently better on-off separation for
eight distinct test patterns in a 100-bit DNA neural network with two activated memories each
consisting of 20 inhibited weights (Fig. S25b). For example, in the bottom right plot, with 0.05×
inputs, the largest on-off separation was achieved around 8 hours, where output Y2 reached 0.9×
and output Y1 remained below 0.2×. With a 10-fold higher input concentration, the largest on-off
separation was achieved earlier around 4 hours, where Y2 reached 0.9× and Y1 remained below 0.1×,
resulting in roughly 0.1× increase in on-off separation. Based on this result, we decided to use the
higher input concentration in later experiments.
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Fig. S25 | Effectiveness of fuel for catalytic weight multiplication. a, Comparison of the kinetics of output
production in weight multiplication using fuel with either a 5 or 7-nt toehold. The rate at which a fuel strand displaces
an input strand from an input-weight product species is dependent on the strength of the universal fuel toehold T
and the universal input toehold U. When the fuel toehold T is 7 nt, the release of input happens more quickly than
when the fuel toehold is 5 nt. b, Comparison of pattern classification performance in a 100-bit two-memory DNA
neural network with a 0.05× or 0.5× input concentration. Each memory consisted of 20 inhibited weights, which
were directly activated by a set of 20 activators without learning. The left four plots with 0.05× inputs are repeats of
the same experiments shown in Fig. S22h. Total input concentration is 1× or 10×, given 20 1s in each test pattern.
Analog weights are the same as shown in Fig. S22c, with a total concentration of 1×. One pair of output trajectories
(blue and yellow) shows the network classification performance when the input concentration is similar to the weight
concentration. The other pair of output trajectories (green and red) shows faster classification and better on-off
separation when the input concentration is 10-fold higher. In both cases, the fuel toehold is 5 nt. In the latter case,
weight multiplication does not rely on the fuel species enabling catalysis. 1× = 50 nM.
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5.8 Improved performance in a 100-bit learning neural network

In the previous three sections, we looked into the scalability problem by investigating the roles
of unused molecules that are supposed to remain inhibited after learning and not interfere with
the desired system behavior. Because the fraction of these molecules grows larger with increasing
network complexity, any spurious activation or unexpected interference would negatively impact
the system scalability. We concluded that unused inhibited activators cause label occlusion, and a
solution is to use excess label (Supplementary Note 5.5). We also concluded that annealing ratio
affects complex purity and spurious activation. To achieve optimal performance both when used
and unused, each complex may have a specific annealing ratio based on its molecular structure
(Supplementary Note 5.6). Finally, we identified that the fuel driving catalytic output production
in weight multiplication was ineffective, leading to reduced pattern classification performance when
inputs are at a low concentration. To improve the system robustness to input occlusion by unused
inhibited activators, a higher input concentration is necessary (Supplementary Note 5.7).

Applying the above findings, we repeated a representative set of experiments in Fig. S22 with
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Fig. S26 | Improved performance in a 100-bit learning neural network with adjusted annealing ratio
and input concentration. a-d, Fluorescence kinetics experiments comparing the effect of the adjustments for
activated memories (a), parallel learning (b), and sequential learning with 20 (c) or 100 (d) inhibited weights.
Bar charts show the difference between two outputs at 12 hours for each test pattern in the experiment after the
adjustments (darker colors) compared to that before the adjustments (lighter colors) shown in Figs. S22e, d, h, and
c, respectively. Inhibited weights were annealed with a 20% excess bottom strand before PAGE purified. Inhibited
activators were annealed with a 5% excess bottom strand before PAGE purified. Label was at 5×. Input was at
0.5×. 1× = 50 nM. Note that experiments of sequential learning with 20 weights shown in c are compared to an
easier case of activated memories with 20 weights shown in Fig. S22h, suggesting that the actual improvement is
more than what appears in the bar chart.
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adjusted annealing ratio and input concentration. Label concentration was already in excess in
Fig. S22 before we verified the impact of label occlusion, and thus no additional change was im-
plemented here. Experiments showed mildly improved performance of 100-bit pattern classification
with activated memories (Fig. S26a) and with memories learned in parallel (Fig. S26b). However,
for sequential learning, the performance was only improved when the unused inhibited weights were
absent (Figs. S26c and d).

The observations led us to a hypothesis: the second set of training patterns leaked into the
first learned memory, and spuriously activated the weights that were supposed to be unused. This
hypothesis explains why test patterns in the first class, digits “6”, cannot be properly classified, if
and only if the two classes of patterns are learned sequentially and the unused inhibited weights
are present. We will investigate this hypothesis in the next two sections (Supplementary Notes 5.9
and 5.10) by focusing on the role of input leak in learning.
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5.9 Input leak in learning

Input leak in learning refers to an input strand spuriously displacing the top strand of an inhibited
activator and producing an activator without the presence of a label.

Xi + Act∗i,j → Acti,j

This leak is expected to be largely irreversible because once released the top strand of the inhibited
activator will fold into a hairpin, where the toehold for initiating the reserve reaction will be
concealed.

To understand the leak, we designed a set of experiments to answer the following questions.
First, the input is modified with a quencher and inhibited activator modified with a fluorophore to
monitor the kinetics of learning and to detect leak. Does the fluorophore-quencher interaction affect
the leak? In an earlier section (Supplementary Note 4.6) we had discovered that the fluorophore-
quencher interaction on the drain in Design 1 contributed to the undesired reversibility of learning.
Here, understanding the impact of the fluorophore and quencher would allow us to separate an effect
that only exists in the leak detection process versus an effect that helps explain the problem observed
in a 100-bit neural network where learning was not monitored. Second, does the input sequence
affect the leak? Third, does the inhibited activator sequence affect the leak? Finally, can the above
questions be answered with respect to each of the two phases of the leak, the initial leak that
happens instantly and the long-term leak that happens gradually? As the underlying mechanisms
for these two phases are different, this understanding would help us evaluate the significance of each
cause and devise solutions accordingly.

The experiments involved four inputs, two classes of inhibited activators, and four distinct
fluorophore-quencher pairs (Fig. S27a). To separate instant leak from gradual leak, we utilized
two versions of the input strand, with and without a quencher (Fig. S27b). When the unlabeled
input is added first, it is expected to “quietly” initiate the instant leak without changing the
fluorescence signal. In this process, copies of the inhibited activator that have synthesis errors are
expected to react with the input much faster than copies without synthesis errors. Next, when the
quencher-labeled input is added after the fraction of inhibited activator with synthesis errors have
been consumed, it is expected to trigger graduate leak via toeless strand displacement, resulting in
fluorescence decrease.

In each of the eight combinations of input and inhibited activator (Fig. S27c), a negative control
(blue trajectory) was included as a reference for minimum fluorescence change when both input
and label were absent, where the inhibited activator remained at 1×. A positive control (orange
trajectory) was included as a reference for maximum fluorescence change when both input and label
were in excess, where the inhibited activator was fully consumed and reached 0×. The full input
leak (green trajectory), including instant and gradual leak, was observed when the input was present
but the label was absent. The gradual leak alone (red trajectory) was observed when the unlabeled
input was used to quietly remove instant leak before the quencher-labeled input was introduced.

The worst gradual leak occurred between Act∗7,2 andX7 (Fig. S27c, bottom right plot). It was not
caused by the input sequence alone, because the same input exhibited much less gradual leak with
another inhibited activator Act∗7,1 (Fig. S27c, top right plot). Moreover, it was not caused by the
fluorophore-quencher interaction alone, because the same fluorophore-quencher pair (ATTO590 and
RQ) exhibited much less graduate leak in a different combination of input and inhibited activator
(Fig. S27c, third plot in the top row). Unlike the fluorophore-quencher interaction observed earlier

67



with clamp

a

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

𝐴𝐴𝐴𝐴𝐴𝐴1,1
∗  (ATTO550) +𝑋𝑋1 (RQ) 𝐴𝐴𝐴𝐴𝐴𝐴3,1

∗  (ATTO488) +𝑋𝑋3 (FQ) 𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗  (ATTO590) +𝑋𝑋5 (RQ) 𝐴𝐴𝐴𝐴𝐴𝐴7,1

∗  (ATTO647) +𝑋𝑋7 (RQ)

𝐴𝐴𝐴𝐴𝐴𝐴1,2
∗  (ATTO647) +𝑋𝑋1 (RQ) 𝐴𝐴𝐴𝐴𝐴𝐴3,2

∗  (ATTO488) +𝑋𝑋3 (FQ) 𝐴𝐴𝐴𝐴𝐴𝐴5,2
∗  (ATTO550) +𝑋𝑋5 (RQ) 𝐴𝐴𝐴𝐴𝐴𝐴7,2

∗  (ATTO590) +𝑋𝑋7 (RQ)

c

2. 𝑋𝑋𝑖𝑖 = 2 ×, 𝐿𝐿1 = 2 × 

0. 𝑋𝑋𝑖𝑖 = 0 ×, 𝐿𝐿1 = 0 × 

1. 𝑋𝑋𝑖𝑖 = 1 ×, 𝐿𝐿1 = 0 ×
2. 𝑋𝑋𝑖𝑖 = 1 ×, 𝐿𝐿1 = 0 ×

❶❷

❶❷

❶❷

❶❷

❶❷

❶❷

❶❷

❶❷

inhibited activator 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗  (F)

input 𝑋𝑋𝑖𝑖  (Q)

label (𝐿𝐿𝑗𝑗)

input 𝑋𝑋𝑖𝑖

Q = FQ or RQ

F = ATTO488, ATTO550, ATTO590, or ATTO647
❶ Add 1 × unlabeled input 𝑋𝑋𝑖𝑖

❷ Add 1 × quencher-labeled input 𝑋𝑋𝑖𝑖  (Q)

2. 𝑋𝑋𝑖𝑖 = 2 ×, 𝐿𝐿2 = 2 × 

0. 𝑋𝑋𝑖𝑖 = 0 ×, 𝐿𝐿2 = 0 × 

1. 𝑋𝑋𝑖𝑖 = 1 ×, 𝐿𝐿2 = 0 ×
2. 𝑋𝑋𝑖𝑖 = 1 ×, 𝐿𝐿2 = 0 ×

b

d

e

quietly remove instant leak

detect gradual leak

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗  (ATTO590) +𝑋𝑋5 (RQ)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

without clamp

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗  (ATTO590) +𝑋𝑋5 (RQ)

In
hi

bi
te

d 
ac

tiv
at

or

Time (hours)

𝑋𝑋5 = 2 ×, 𝐿𝐿1 = 2 × 

𝑋𝑋5 = 0 ×, 𝐿𝐿1 = 0 × 

𝑋𝑋5 = 1 ×, 𝐿𝐿1 = 0 × 
𝑋𝑋5 = 2 ×, 𝐿𝐿1 = 0 × 

𝑋𝑋5 = 4 ×, 𝐿𝐿1 = 0 × 

O
ut

pu
t

Time (hours)

without cleanup strand

Time (hours)

O
ut

pu
t

with cleanup strand

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗ = 1 ×, 𝑋𝑋5 = 0 ×

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗ = 0 ×, 𝑋𝑋5 = 0 ×

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗ = 1 ×, 𝑋𝑋5 = 1 ×

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗ = 1 ×, 𝑋𝑋5 = 2 ×

𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗ = 1 ×, 𝑋𝑋5 = 8 ×

inhibited activator 
𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑗𝑗∗  (F)

input 𝑋𝑋𝑖𝑖  (Q)

label (𝐿𝐿𝑗𝑗)

inhibited activator 𝐴𝐴𝐴𝐴𝐴𝐴5,1
∗  (A1 variant)

cleanup strand 𝑋𝑋5,1 = 1 ×

𝑋𝑋1 = 2 × 
𝑊𝑊1,1

∗ = 1.5 × 
𝑋𝑋𝑋𝑋1 = 2 × 
𝑅𝑅𝑅𝑅𝑅𝑅 = 2 ×

𝑖𝑖 = 1, 3, 5, or 7

𝑗𝑗 = 1 or 2

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

1.0

0.8

0.6

0.4

0.2

0.0
0 5 10 15 20

Fig. S27 | Input leak in learning. a, Domain-level diagrams of species involved in measuring the input leak.
Four input strands with distinct Xi sequences, two classes of inhibited activators with distinct Tj sequences, and four
fluorophore-quencher pairs are used to evaluate their impact on the leak. b, A two-step mechanism for separating
the detection of gradual leak from instant leak. c, Fluorescence kinetics experiments measuring the input leak in
learning with eight distinct combinations of input Xi and inhibited activator Act∗i,j , where i = 1, 3, 5, or 7 and j = 1
or 2. Except for X3, fluorophore-quencher pairs are different for input Xi and inhibited activators Act∗i,1 and Act∗i,2,
allowing for the separation of impact from input sequence and fluorophore-quencher interaction. Xi in the trajectory
labels indicates quencher-labeled input, whereas number 1 or 2 indicates whether the input was added at the first or
second step around 30 minutes or 2 hours, respectively. In the red trajectories, unlabel input was added at the first
step, which quietly triggered instant leak without showing any fluorescence change. d-e, Experiments demonstrating
leak reduction with a clamp (d) and a cleanup strand (e). For the cleanup strand, input leak in learning was measured
by a downstream weight motif, where leak product Act5,1 (A1 variant) functions as activator Act1,1 and allows for
the input X1 to react with the activated weight W1,1, resulting in an output that can be detected by the reporter.
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(Supplementary Note 4.6), the fluorophore and quencher here are separated by a 2-nt spacer (c∗
on the bottom strand of the inhibited activator) and expected to have a weaker interaction. We
thus hypothesized that the Tj toehold sequence played a role here. Even though T1 and T2 were
designed to have a very similar binding energy (∆G = −9.87 kcal per mol for T1 = TCTTTCA
and ∆G = −9.83 kcal per mol for T1 = CTCTATT), the slightly weaker T2 toehold resulted in
a faster dissociation of the top strand in Act∗7,2, completing the toeless strand displacement leak
initiated by the input.

The worst instant leak occurred between Act∗7,1 and X7 (Fig. S27c, top right plot) and between
Act∗5,2 and X5 (Fig. S27c, third plot in the bottom row). There are no correlations between these two
examples, because the input sequences, the Tj toehold sequences, and the fluorophore-quencher pairs
are all different. This observation could be explained by that the cause of instant leak is synthesis
errors, which may vary randomly from batch to batch in chemically synthesized DNA strands (for
example ordered from Integrated DNA Technologies).

The main conclusions we had here were the following. First, input leak in learning was significant:
up to 0.2× instant leak in less than 30 minutes and up to 0.3× gradual leak in 14 hours were
observed. Second, no clear patterns were observed for the cause of the instant leak. Third, gradual
leak depends on both the Xi sequence and the Tj sequence, and a stronger Tj toehold may help
reduce the gradual leak.

Clamps have been commonly used to reduce gradual leak caused by toeless strand displace-
ment.2,27,28 We originally had designed a clamp in the learning motif, but upon earlier characteri-
zation experiments we falsely concluded that the clamp was not necessary (Supplementary Note 5.2).
Experiments here revealed that the leak is sequence dependent and thus specific characterization
experiments may not effectively inform system behavior for increasing system complexity. Indeed,
reintroducing the clamp in the learning gate significantly reduced the leak (Fig. S27d). Even at a
4-fold higher input concentration than the experiments shown in Fig. S27c, leak remained roughly
the same as when the input was absent.

We further explored using a cleanup strand to reduce instant leak (Fig. S27e). The function of
the cleanup strand is similar to that of excess top strand in the inhibited activator (Supplementary
Note 5.6). After the inhibited activator is annealed and before it is PAGE purified, the cleanup
strand can be added, a fraction of which that are well synthesized will replace the top strand that
have synthesis errors, especially truncations on the 5’ end. Unlike the top strand itself, the cleanup
strand does not have the Lj domain and thus is expected to have less spurious binding to the bottom
strand during PAGE purification. Furthermore, the cleanup strand also lacks the Tj bulge, allowing
it to more effectively displace the top strand that have synthesis errors near the bulge. With this
design, any leftover cleanup strands must be removed by PAGE purification, otherwise they will
function as inputs and corrupt both training and test patterns. For a quick evaluation without
PAGE purification, we created an A1 variant of Act∗5,1 – it can be used to test input X5 leak, where
the leak product functioning as Act1,1 can be detected by a downstream weight motif that utilizes
a different input X1. Experiments showed that after the inhibited activator was treated with the
cleanup strand, the instant leak for up to 8× input was reduced to roughly the same as when the
input was absent.

Combining the above two approaches for reducing instant and gradual leak, we will evaluate
their impact on a 100-bit learning neural network in the next section (Supplementary Note 5.10).
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5.10 Further improvement in a 100-bit learning neural network

The input leak discussed in the previous section (Supplementary Note 5.9) not only allows for the
second set of training patterns to leak into the first learned memory, but also allows for test patterns
to leak into both leaned memories, worsening the pattern classification performance even when the
two memories are trained in parallel. After reintroduction of clamps into the inhibited activators
and treating them with cleanup strands before PAGE purification, the performance of both parallel
and sequential learning was much improved (Fig. S28). This set of experiments was the first time
that we observed a clear (≥ 0.4×) on-off separation in the pair of outputs for all test patterns.
Moreover, the performance of sequential learning (Fig. S28d) is now comparable to that of parallel
learning (Fig. S28c), and the best and worst on-off separations for both classes of test patterns are
now similar to each other, resolving the strong bias observed earlier (Fig. S22a-c).
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Fig. S28 | Further improvement in a 100-bit learning neural network with clamps and cleanup strands.
a-d, Fluorescence kinetics experiments of pattern classification after trained in parallel with MNIST handwritten
digits “0” and “1” (a), “3” and “4” (b), or “6” and “7” (c), and after trained sequentially with “6” and “7” (d).
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The use of cleanup strands adds an incubation step after annealing and before PAGE purification
of inhibited activators. After seeing the improvement of system performance with clamps and
cleanup strands, we opted to evaluate the impact of cleanup strands alone in a 100-bit learning neural
network (Fig. S29), as a justification of the increased complexity in the experimental procedure. In
these experiments, all inhibited activators had clamps, allowing us to focus on comparing the system
performance without and with the cleanup procedure in two distinct orders of learning the same
classes of patterns “6” and “7”. Experimental results suggested slightly improved on-off separation
for the first learned memory and slightly worse separation for the second learned memory when
cleanup strands were used (Figs. S29e and f). Without the cleanup procedure, a slightly stronger
bias was observed when patterns “6” were learned first (Fig. S29g). With the cleanup procedure,
roughly the same system performance was observed regardless of the learning order (Fig. S29h).
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Fig. S29 | Separated evaluation of cleanup strands in a 100-bit learning neural network. a-d, Fluorescence
kinetics experiments of pattern classification after learning “6” first and then “7” (a and c) or learning “7” first and
then “6” (b and d), using inhibited activators without (a and b) or with (c and d) a cleanup treatment. e-h, Bar
charts comparing the impact of cleanup strands (e and f) and learning order (g and h). Each bar shows the difference
between two outputs at 12 hours for each test pattern. All experiments here used inhibited activators with clamps.
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Overall, the observed impact of cleanup strands on system behavior was minor, presumably
due to the intrinsic robustness of the winner-take-all architecture, where a small amount of noise in
both memories can be cancelled out in the annihilation process. To keep the experimental procedure
simple, we stopped using cleanup strands in later experiments.

The experiments with two learning orders highlighted a small yet remaining bias for the sec-
ond learned memory. We will attempt to better understand the system bias in the next section
(Supplementary Note 5.11).
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5.11 System bias

There are two known sources of bias in the system. First, we observed that activating weights
in memory 2 was generally faster than activating weights in memory 1 (for example, comparing
W ∗

i,2 to W ∗
i,1 in Extended Data Fig. 4d). This rate difference is presumably due to the difference

in strength of the 5-nt exposed part of toehold Tj on the inhibited weight (Fig. S30a, left). We
designed the 7-nt toehold T1 and T2 to have very similar binding energies. However, when the
clamp cj was incorporated to reduce spurious activation caused by inhibited activators, it covered
up 2 nucleotides of Tj and created an imbalance in the remaining 5 nucleotides – the exposed part
of T1∗ now has one G whereas that of T2∗ has two Gs. We estimated that the toehold dissociation
rate for T1 was roughly 5 times faster than that for T2 in binding to the double-stranded activators
produced from learning (Supplementary Note 2.1). Second, we measured that signal amplification
for output 2 was slightly (1.4×) faster than that for output 1 (Fig. S30a, right). This rate difference
is presumably due to the difference in branch migration sequences of the two amplification gates,
despite that a universal toehold was used.

To evaluate whether the known biases in the two distinct layers of the neural network explain
the observed system-level bias in pattern classification after leaning, we explored four combinations
of reaction pathways for storing and classifying the same 100-bit pattern with distinct memory and
output identities (Fig. S30b). In the first case, handwritten digit “6” was learned into memory 1 and
connected with output 1, resulting in a slower weight activation and a slower signal amplification. In
the second case, “6” was learned into memory 1 but connected with output 2, resulting in a slower
weight activation but a faster signal amplification. In the third case, “6” was learned into memory 2
and connected with output 2, resulting in a faster weight activation and a faster signal amplification.
In the last case, “6” was learned into memory 2 but connected with output 1, resulting in a faster
weight activation but a slower signal amplification. Overall, we expected that test patterns in class
“6” would be best classified in the third case (faster-faster) and worst classified in the first case
(slower-slower). A stronger system bias would arise in the first and third cases, whereas the second
and fourth cases (slower-faster and faster-slower) could provide improved system performance.

Another factor that we considered was incomplete production of activators in learning. In
characterizing the learning motif, we observed that activator concentration was generally lower than
that of the input (Fig. 2e). This is unsurprising because signal loss was expected in stoichiometric
reactions where synthesis errors in reactant molecules would prevent fully effective release of product
molecules. To account for the incomplete production of activators, we explored a 1.25-fold higher
concentration of molecules yielded from learning, which would correspond to 1.25× learned weights
if full production is assumed. We also included lower concentrations of learned weights to evaluate
their impact on the system bias.

Experimental results agreed with our expectations, while providing quantitative conclusions
on how the two sources of bias affect the system behavior (Fig. S30c). The best on-off separation
(approximately 0.55× in 8 hours) was observed when “6” was learned into memory 2 and connected
with output 2 at the highest concentration (1.25×) of learned weights (top and bottom trajectories
in the bottom right plot). Conversely, the worst on-off separation (approximately 0.15× in 8 hours)
was observed when “6” was learned into memory 1 and connected with output 1 at the lowest
concentration (0.5×) of learned weights (middle two trajectories in the top left plot). Swapping
the wires between the weighted sum and winner-take-all layers resulted in mild improvement of
the system bias, reducing the on-off separation in the favored memory (middle two trajectories in
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all plots in the bottom row) while simultaneously increasing the on-off separation in the unfavored
memory (top and bottom trajectories in all plots in the top row).
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Fig. S30 | System bias in a learning DNA neural network. a, Two types of biases in the weighted sum layer
(highlighted in blue) and winner-take-all layer (highlighted in gray) of the neural network. b, Evaluating the impact
of each type of bias using four distinct combinations of reaction pathways. Weight matrix highlighted in orange,
memory of MNIST handwritten digit “6”, is involved in all four specified combinations of expected relative speed in
the two layers. “slower” and “faster” in blue represent the expected bias in the weight sum layer, whereas “slower”
and “faster” in gray represent the expected bias in the winner-take-all layer. c, Fluorescence kinetics experiments
for the four combinations of reaction pathways with varying total concentration of learned weights. A single test
pattern “6” was used to evaluate the bias in all combinations and across all concentrations of learned weights. Plots
in the top row show experiments with “6” learned into memory 1 and “7” learned into memory 2 in parallel (first
two cases in b). Plots in the bottom row have the two memories swapped (last two cases in b). Trajectory label
x → wj → yk indicates the pathway for which the input pattern x is compared with memory wj for producing
output yk. If the two wires between the weighted sum layer and winner-take-all layer are swapped, j ̸= k, otherwise
j = k, where j, k ∈ {1, 2}.
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Experimental results also suggested that if the learned weights was only half the expected
amount, the system bias would become significantly worse (left two plots in Fig. S30c). This
performance decline can be explained by the decreased difference and thus more challenging com-
petition between the two weighted sum species. Fortunately, even though the effective concentration
of the learned weights may be lower than the ideal situation when full production of the activators
is assumed, the system performance remained similar to that with a higher weight concentration
(comparing the plots in the third column to that in the last column in Fig. S30c). Like the possible
explanation for the observed impact of the cleanup strands at the system level (Supplementary
Note 5.10), this phenomenon may be due to the intrinsic robustness of the winner-take-all architec-
ture – when the difference between the two weighted sum species is large enough, small changes in
the species concentrations would not affect the overall pattern classification performance.

To summarize, the rate difference in memory activation played a more significant role than the
rate difference in output amplification, giving rise to a system-level bias favoring the class of patterns
learned into memory 2. Paring up slower memory activation with faster output amplification showed
mild improvement on the classification performance, but we decided that the improvement was not
significant enough to justify the change and thus the approach of swapped wires was generally not
used in later experiments.
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5.12 Good teacher

In all learning experiments discussed so far, we used a mixture of 100 training patterns while keeping
only the input strands that corresponded to the most common 20 bits with the largest sums. This
“trimming” mechanism is conceptually similar to a sorting plus thresholding function where the
signals are sorted and the threshold value is set between the k-th and (k + 1)-th signal values, or a
k-winner-take-all function where the zero or one output values are multiplied by the input values.
Neither of these functions have been implemented in DNA strand displacement circuits. Instead
of developing a molecular implementation for the trimming mechanism, we turned to investigate a
simpler alternative solution by adding constraints to the training dataset.

First, we compared the expected pattern classification performance with and without the trim-
ming mechanism in learning (Fig. S31a). When the most common 20 bits from the average of 100
training patterns are used as weights (shown in gray boxes), test patterns are spread out in the
weighted sum space (gray points). Roughly 84% of the tests are on or outside of the 20% margin
to the diagonal line, indicating that the difference between the two weighted sums for comparing
a test pattern to the two memories is sufficiently large for the pattern to be correctly classified via
experiments in a test tube. By contrast, when all bits from the average of 100 training patterns
are used as weights (shown in dark green and yellow boxes), test patterns become more clustered
and closer to the diagonal line in the weighted sum space (dark green and yellow points). The ex-
pected pattern classification performance (percentage of tests with a margin ≥ 0.2) is significantly
decreased to roughly 44%.

We then asked: how does the pattern classification performance change with the size of the
training dataset when trimming is not allowed? When only a single training pattern is used, the
test performance varies widely from below 5% to above 80% (Fig. S31b, training dataset size = 1).
This is unsurprising because the best examples of a “6” or “7” look similar to a trimmed version
of the averaged training patterns, whereas the worst examples look nothing like a “6” or “7”. As
the training dataset size increases, the medium performance improves mildly at first and then stays
roughly the same (white line within each box in the box-and-whisker plot) while the distribution
becomes tighter (above 25% to below 65% for training dataset size = 100). Naturally, the tighter
distribution is because the probability of examples from a randomly chosen dataset are either all
good or all bad is smaller when the size of the dataset is larger. From the above analysis we con-
cluded that too many training patterns would not allow for good pattern classification performance,
whereas too few training patterns would only allow for good performance if the patterns are heavily
handpicked. To strike a balance, we chose the size of 10 patterns in each training dataset.

We ranked the training patterns based on their positions in the weighted sum space using the
average of all training patterns as weights. A larger distance to the diagonal line is better and a
smaller distance is worse. When there are a hundred examples of “6” and “7” in the training dataset,
the average of them look the best if all examples are from the top 10% of the training pool (Fig. S31b,
bottom two rows of averaged examples). When examples are drawn from a lower ranked decile
group, the averaged patterns become more smeared. Moreover, the divergence appears to accelerate
toward the bottom few decile groups. Inspired by this observation, we asked: how does the pattern
classification performance change if a fraction of patterns can be removed from the training pool?
Using the ranking of the training patterns, we analyzed the test performance for training datasets
of 10 patterns randomly drawn from a training pool where the bottom decile group is removed
for each of the subsequent trial (Fig. S31c). The medium performance increases gradually as the
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Fig. S31 | Good teacher approach for selecting a training dataset. a, Analysis of all test patterns in their
weighted sum space, using the average of 100 training patterns as weights, keeping the most common 20 bits (weights
highlighted in a gray box) or all bits (weights highlighted in a dark green or yellow box). Diagonal lines highlight an
area with a 20% margin to equal weighted sums, test patterns outside of which are deemed experimentally feasible
for correct classification. Distributions of the margin are shown near the top right corner. b-c, Box-and-whisker
plot showing test performance for 200 random samples of a training dataset with a varying size (b) or drawn from
a varying fraction of patterns in the training pool (c). White line within the box represents the medium. Top and
bottom edges of the box represent the 75% and 25% quartile, respectively. Upper and lower fences of the whiskers
represent maximum and minimum values excluding outliers. Individual points outside the range of the whiskers
represent outliers. d, Violin plot showing test performance for 1000 random samples of a training dataset with 10
patterns drawn from the top 50% of the training pool for handwritten digits “0” and “1”, “3” and “4”, or “6” and
“7”. A representative sample in each class is highlighted in purple, and the weighted sum analysis is shown using
weights resulted from these samples of training datasets.
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fraction of patterns reserved in the training pool decreases, while the most significant improvement
occurs at the beginning when the worst 10% of patterns are removed. Based on this result, we chose
to use the top 50% patterns in the training pool, which on average provides above 60% pattern
classification performance for the two classes of handwritten digits “6” and “7”.

Combining the two constraints together, we now have a relatively small size of training dataset
randomly selected from a pool where the worse-than-average examples are removed. We named it
a “good teacher” approach and applied it to generate six training datasets (Fig. S31d) that will be
used in later learning experiments.
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5.13 Sample evaporation

From the first attempt of learning and testing in a 100-bit DNA neural network (Fig. S22) to the
final experiments shown in the main paper (Figs. 4 to 6), the time span was over two years. Within
this period of time, we were not always successful reproducing the same learning results. One
variable was the quality of PAGE purified complexes. As discussed in Supplementary Note 5.6,
loading a larger volume of sample per lane helps improve the yield but could also result in reduced
resolution and worse separation of desired and undesired complexes. Similarly, cutting out a larger
area of sample helps improve the yield but could also lead to lower purity of the complex. Increasing
the gel running time could help improve separation but also requires more repeated times to refresh
the running buffer and clean the magnesium buildup on the exposed wires of the gel apparatus.
Carefully balancing the above conditions is necessary for obtaining high yield and high quality of
purified complexes. Moreover, DNA degradation occurs much faster in magnesium than in TE
buffer, and thus the quality of annealed and purified complexes stored in magnesium may decrease
significantly in just a few months. When we had problems reproducing the experimental results, we
typically first consider re-annealing and re-purifying the complexes including inhibited activators
and inhibited weights. However, at one time the problem persisted, triggering an investigation on
the quality of stock strands.

We measured the concentration of each DNA strand on a deep well stock plate provided by
Integrated DNA Technologies, IDT (Fig. S32a, left plot). Only 32% of the stock strands was within
5% of the expected concentration of 100 µM. 31% was below 95 and above 90 µM, 34% was below
90 and above 80 µM, and 3% was below 80 µM. Upon discussions with IDT, we concluded that their
DNA quantification procedure was not nearly as strict as ours, allowing for substantial errors. These
errors may not be problematic for less quantitative studies using synthetic DNA, but they play in an
important role in constructing DNA circuits where the concentrations of molecules directly impact
the function of computation. Thus, we opted to use our own concentration measurements for most
of the experiments reported in this work.

Roughly 8 months later, we repeated the measurements and found that all stock strands had
their concentrations increased by 1.91± 1.01 µM (Fig. S32a, middle and right plots). In the worst
case, a 8.8 µM increase was observed in the strand stored in well H2. We hypothesized that the
increase in concentration was due to sample evaporation, which depends on how tight the seal is at
specific well positions.

Given the scale of the experiments, we used an acoustic liquid handler to prepare samples such
as mixtures of inputs for training and test patterns. For these automated procedures, strands
were transferred from a deep well stock plate into an Echo source plate and stored there for later
experiments. The concentration measurements of samples stored in an Echo source plate revealed
striking changes in 8 months (Fig. S32b). Both increase and decrease in concentration were observed
across the 91 strands. Compared to the IDT stock plate, the change in Echo plate had both a larger
average and a wider distribution (6.24 ± 13.97 µM). For 65% of the strands, the change was an
increase below 10 µM. However, in the worst case, a 48.2 µM increase and a 36.5 µM decrease were
observed. Interestingly, these two extreme changes occurred at two well positions adjacent to each
other (F7 and G7). In fact, this pattern of neighboring wells with increased (colored in red) and
decreased (colored in blue) concentrations was common across the plate.

Utilizing the above clue, we came up with the following hypothesis. When samples evaporate,
condensation forms on the sealing tape above individual wells. The condensation can travel be-
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Fig. S32 | Sample evaporation in plates. a-b, Measured changes of strand concentrations on a deep well stock
plate (a) or an Echo source plate (b). Strand concentrations were first measured shortly after they were synthesized,
normalized to 100 µM in IDTE buffer with full yield, and delivered in a 96-well deep well plate provided by Integrated
DNA Technologies (IDT), and then measured again in roughly eight months. A 60 µL sample of each strand was
transferred from the IDT stock plate to a 96-well region on a 384-well Labcyte Echo source plate. The first set of
measurements was done on the same day of the sample transfer and thus the concentrations for the IDT stock plate
and Echo source plate are assumed to be the same. Concentration measurements were performed using UV absorbance
on a Take3 microvolume plate on a BioTek Synergy H1 plate reader, which allows for high-throughput measurements
of up to 16 samples in parallel. 14 out of the 91 measurements were repeated on a NanoDrop spectrophotometer.
The difference was determined to be sufficiently small (0.13 ± 1.28 µM). A positive or negative number indicates
increased or decreased strand concentration comparing the measurements on the two dates, respectively.

tween wells via the surface of the sealing tape, especially when gentle mixing was applied to create
homogeneous samples. This hypothesis was supported by a 5 to 8 µL volume displayed for an well
that was supposed to be empty (H9) in three repeats of Echo plate survey. We found a droplet in
that well, and measured its concentration on a NanoDrop. The concentration was approximately
zero, indicating no DNA but only buffer. This evidence agreed with the possibility of condensation
leaking into neighboring wells, causing increased concentration in one well and decreased concen-
tration in the other. We thus concluded that long-term sample storage in Echo source plate is
problematic and should be avoided. For critical experiments, we opted to use Echo source plate
with freshly transferred samples. For less critical experiments, we improved the sealing method by
using an additional layer of Parafilm wrapped around the edges, and used pipet mixing instead of
shaking or vortexing when gentle mixing is needed.

Learning from the above results, we established routine concentration survey as a method to
evaluate the quality of strands in IDT stock plates and Echo source plates, guiding our decision
to make fresh sample transfers or order new strands when severe changes in concentrations are
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Fig. S33 | Pattern classification in a 100-bit learning neural network. a-b, Fluorescence kinetics experiments
with 12 test patterns from each class of handwritten digits “3” and “4” using old strands (a) or newly ordered strands
(b) for all 200 inhibited activators involved in learning. Two training datasets were chosen utilizing the good teacher
approach. The average of 10 patterns in each dataset is shown in the middle plot in Fig. S31d. 12 representative
test patterns in each class were chosen randomly from each of 12 evenly divided regions in the weighted sum space.
c, Bar chart showing the difference between the two outputs at 12 hours for each of the 24 test patterns, comparing
the old strands (lighter colors) with the newly ordered strands (darker colors).
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observed. These changes indicate not only evaporation but also possible contamination in samples.
In one case, our attempt of pattern classification in a 100-bit neural network failed after training

with a dataset using the good teacher approach (Supplementary Note 5.12). All test patterns in
class “3” resulted in poor on-off separation between the pair of outputs (Fig. S33a). This result
was unexpected because the same set of molecules were used in the earlier successful demonstration
of pattern classification (Fig. S28). The good teacher approach was supposed to eliminate the
undesired trimming step in creating the training samples but not affect the experimental results.
Upon measuring the concentrations of DNA strands involved in the 100-bit experiments, we found
mysterious concentration increase in some plates and decrease in the others for a batch of IDT stock
plates ordered at the same time. After re-ordering all strands in those plates, the performance of
the 100-bit learning neural network was restored (Fig. S33b). All test patterns from both classes
resulted in clear on-off separations within 12 hours (Fig. S33c).

We have discussed earlier that for ambitious research projets that take a long time, it is important
that we not only learn from each failed experiment, but also fit all pieces of the knowledge together
into one complete picture (Supplementary Note 4.9). Here, we further emphasize the importance
of systematic approaches for differentiating sample problems from design problems. Otherwise our
energy and attention would be dissipated instead of being concentrated, to paraphrase Sir Arthur
Conan Doyle.29
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6 DNA sequences

Table S1: DNA sequences of input strands.

Name Sequence

X[i1] CAACTTCCCACACTT TTTAATTTT

X[i2] CATCTAACCAACTTA TTTAATTTT

X[i3] CACCTAAACAATACT TTTAATTTT

X[i4] CATTACATCACAATC TTTAATTTT

X[i5] CAACCTTACATTATC TTTAATTTT

X[i6] CAATCCATCATCTTA TTTAATTTT

X[i7] CATCACTACATCCAC TTTAATTTT

X[i8] CATCCCAACATACCT TTTAATTTT

X[i9] CAATCTCCCAACCCA TTTAATTTT

X[i10] CATTTCCACAACTTT TTTAATTTT

X[i11] CATCTTTTCACCACT TTTAATTTT

X[i12] CAATTACTCAAACTC TTTAATTTT

X[i13] CACTATCACAACCTC TTTAATTTT

X[i14] CACAACAACACACCC TTTAATTTT

X[i15] CAATCATACATATCC TTTAATTTT

X[i16] CACCCTTTCATACTA TTTAATTTT

X[i17] CATCCACTCAATCCC TTTAATTTT

X[i18] CATACTCACATAATC TTTAATTTT

X[i19] CATACACCCACTTCT TTTAATTTT

X[i20] CACCTTCTCATATCT TTTAATTTT

X[i21] CATTATTTCAACCCT TTTAATTTT

X[i22] CATTAATACACTTCC TTTAATTTT

X[i23] CATTTACACACACAT TTTAATTTT

X[i24] CATAATTCCATCTTC TTTAATTTT

X[i25] CAACACTTCACTCCT TTTAATTTT

X[i26] CATCTATCCACTATC TTTAATTTT

X[i27] CACTCCTACAAATTA TTTAATTTT

X[i28] CACTACCTCATACCC TTTAATTTT

X[i29] CATACCTACACTCTA TTTAATTTT

X[i30] CACTCACACACCTTC TTTAATTTT

X[i31] CAACTACACATTCTA TTTAATTTT

X[i32] CATATTCACAAACCA TTTAATTTT

X[i33] CACACATTCAAAACT TTTAATTTT

X[i34] CACTTTTCCACTTTA TTTAATTTT

X[i35] CAAATACCCACCCAC TTTAATTTT

X[i36] CACCACATCATTATT TTTAATTTT

X[i37] CATCCCTTCAATATA TTTAATTTT

X[i38] CAATTCATCAACAAC TTTAATTTT

X[i39] CATAAACACATCCCT TTTAATTTT

X[i40] CACATATACACAAAC TTTAATTTT

X[i41] CATCCTATCACTTTC TTTAATTTT

X[i42] CAAAACCACAATCAC TTTAATTTT

X[i43] CATCATAACAACACC TTTAATTTT

X[i44] CACAAATTCATTCAC TTTAATTTT

X[i45] CATTATCCCATAACT TTTAATTTT

X[i46] CAATATCTCACTCAT TTTAATTTT

X[i47] CACCAATCCATTTCA TTTAATTTT

X[i48] CATTTTAACATTCCC TTTAATTTT

X[i49] CACCTCCTCAACACA TTTAATTTT
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Name Sequence

X[i50] CATTCTTACACCAAC TTTAATTTT

X[i51] CACATTCCCATTAAC TTTAATTTT

X[i52] CAACCATCCAAACTA TTTAATTTT

X[i53] CAAACAACCATTTAC TTTAATTTT

X[i54] CAATCCTCCAATACC TTTAATTTT

X[i55] CATCACACCACCTAT TTTAATTTT

X[i56] CAACCAAACATCACT TTTAATTTT

X[i57] CATAACCTCAAATCT TTTAATTTT

X[i58] CAATATTCCACATCA TTTAATTTT

X[i59] CACTATACCAATAAC TTTAATTTT

X[i60] CAAAATCCCAATCTA TTTAATTTT

X[i61] CACTAAACCATACAT TTTAATTTT

X[i62] CAACAACCCAAATCC TTTAATTTT

X[i63] CAATAAAACACCCTA TTTAATTTT

X[i64] CAAATCACCAAAACA TTTAATTTT

X[i65] CATCTTATCAAACAC TTTAATTTT

X[i66] CATACCACCATCCTC TTTAATTTT

X[i67] CACAAACTCACCTCA TTTAATTTT

X[i68] CAACCCACCAATTTT TTTAATTTT

X[i69] CATTCACCCATATTA TTTAATTTT

X[i70] CACCCAATCATAAAC TTTAATTTT

X[i71] CACACCAACAACCAT TTTAATTTT

X[i72] CACTCTAACACTTAT TTTAATTTT

X[i73] CAACAATTCACCTAC TTTAATTTT

X[i74] CACCCTACCACTCCC TTTAATTTT

X[i75] CACACTTCCAATTAT TTTAATTTT

X[i76] CACAATATCATCACC TTTAATTTT

X[i77] CAAACTCTCATCATT TTTAATTTT

X[i78] CAATTTCACACCACC TTTAATTTT

X[i79] CAACTTACCATTCAT TTTAATTTT

X[i80] CATCCATACAACTAT TTTAATTTT

X[i81] CAACTCTACACATTC TTTAATTTT

X[i82] CAAATCCTCATTTTC TTTAATTTT

X[i83] CACCATTACAAACAT TTTAATTTT

X[i84] CATATATTCAACTCC TTTAATTTT

X[i85] CAATCACTCATTACA TTTAATTTT

X[i86] CACCAACACAAAATA TTTAATTTT

X[i87] CAAACCCACATATAT TTTAATTTT

X[i88] CATCTCTCCATAAAT TTTAATTTT

X[i89] CATATCAACATCTCA TTTAATTTT

X[i90] CACATCCACACTACA TTTAATTTT

X[i91] CATCAAACCACAACA TTTAATTTT

X[i92] CAAACTTTCACACAC TTTAATTTT

X[i93] CACCTACCCATCTAT TTTAATTTT

X[i94] CACCTTTACAATTCC TTTAATTTT

X[i95] CATTCCTTCACATAT TTTAATTTT

X[i96] CACAACTCCACCATT TTTAATTTT

X[i97] CAATACTCCATCAAT TTTAATTTT

X[i98] CACTTATCCAACATT TTTAATTTT

X[i99] CACATAATCACCCTT TTTAATTTT

X[i100] CATACCCTCACTAAC TTTAATTTT
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Table S2: DNA sequences of top strands in the learning gates for memory 1.

Name Sequence

inhAct[m1-i1]-t TGAAAGA CAACTTCCC TCTTTCA ACACTT TTTAATTTT CC AACCTTC

inhAct[m1-i2]-t TGAAAGA CATCTAACC TCTTTCA AACTTA TTTAATTTT CC AACCTTC

inhAct[m1-i3]-t TGAAAGA CACCTAAAC TCTTTCA AATACT TTTAATTTT CC AACCTTC

inhAct[m1-i4]-t TGAAAGA CATTACATC TCTTTCA ACAATC TTTAATTTT CC AACCTTC

inhAct[m1-i5]-t TGAAAGA CAACCTTAC TCTTTCA ATTATC TTTAATTTT CC AACCTTC

inhAct[m1-i6]-t TGAAAGA CAATCCATC TCTTTCA ATCTTA TTTAATTTT CC AACCTTC

inhAct[m1-i7]-t TGAAAGA CATCACTAC TCTTTCA ATCCAC TTTAATTTT CC AACCTTC

inhAct[m1-i8]-t TGAAAGA CATCCCAAC TCTTTCA ATACCT TTTAATTTT CC AACCTTC

inhAct[m1-i9]-t TGAAAGA CAATCTCCC TCTTTCA AACCCA TTTAATTTT CC AACCTTC

inhAct[m1-i10]-t TGAAAGA CATTTCCAC TCTTTCA AACTTT TTTAATTTT CC AACCTTC

inhAct[m1-i11]-t TGAAAGA CATCTTTTC TCTTTCA ACCACT TTTAATTTT CC AACCTTC

inhAct[m1-i12]-t TGAAAGA CAATTACTC TCTTTCA AAACTC TTTAATTTT CC AACCTTC

inhAct[m1-i13]-t TGAAAGA CACTATCAC TCTTTCA AACCTC TTTAATTTT CC AACCTTC

inhAct[m1-i14]-t TGAAAGA CACAACAAC TCTTTCA ACACCC TTTAATTTT CC AACCTTC

inhAct[m1-i15]-t TGAAAGA CAATCATAC TCTTTCA ATATCC TTTAATTTT CC AACCTTC

inhAct[m1-i16]-t TGAAAGA CACCCTTTC TCTTTCA ATACTA TTTAATTTT CC AACCTTC

inhAct[m1-i17]-t TGAAAGA CATCCACTC TCTTTCA AATCCC TTTAATTTT CC AACCTTC

inhAct[m1-i18]-t TGAAAGA CATACTCAC TCTTTCA ATAATC TTTAATTTT CC AACCTTC

inhAct[m1-i19]-t TGAAAGA CATACACCC TCTTTCA ACTTCT TTTAATTTT CC AACCTTC

inhAct[m1-i20]-t TGAAAGA CACCTTCTC TCTTTCA ATATCT TTTAATTTT CC AACCTTC

inhAct[m1-i21]-t TGAAAGA CATTATTTC TCTTTCA AACCCT TTTAATTTT CC AACCTTC

inhAct[m1-i22]-t TGAAAGA CATTAATAC TCTTTCA ACTTCC TTTAATTTT CC AACCTTC

inhAct[m1-i23]-t TGAAAGA CATTTACAC TCTTTCA ACACAT TTTAATTTT CC AACCTTC

inhAct[m1-i24]-t TGAAAGA CATAATTCC TCTTTCA ATCTTC TTTAATTTT CC AACCTTC

inhAct[m1-i25]-t TGAAAGA CAACACTTC TCTTTCA ACTCCT TTTAATTTT CC AACCTTC

inhAct[m1-i26]-t TGAAAGA CATCTATCC TCTTTCA ACTATC TTTAATTTT CC AACCTTC

inhAct[m1-i27]-t TGAAAGA CACTCCTAC TCTTTCA AAATTA TTTAATTTT CC AACCTTC

inhAct[m1-i28]-t TGAAAGA CACTACCTC TCTTTCA ATACCC TTTAATTTT CC AACCTTC

inhAct[m1-i29]-t TGAAAGA CATACCTAC TCTTTCA ACTCTA TTTAATTTT CC AACCTTC

inhAct[m1-i30]-t TGAAAGA CACTCACAC TCTTTCA ACCTTC TTTAATTTT CC AACCTTC

inhAct[m1-i31]-t TGAAAGA CAACTACAC TCTTTCA ATTCTA TTTAATTTT CC AACCTTC

inhAct[m1-i32]-t TGAAAGA CATATTCAC TCTTTCA AAACCA TTTAATTTT CC AACCTTC

inhAct[m1-i33]-t TGAAAGA CACACATTC TCTTTCA AAAACT TTTAATTTT CC AACCTTC

inhAct[m1-i34]-t TGAAAGA CACTTTTCC TCTTTCA ACTTTA TTTAATTTT CC AACCTTC

inhAct[m1-i35]-t TGAAAGA CAAATACCC TCTTTCA ACCCAC TTTAATTTT CC AACCTTC

inhAct[m1-i36]-t TGAAAGA CACCACATC TCTTTCA ATTATT TTTAATTTT CC AACCTTC

inhAct[m1-i37]-t TGAAAGA CATCCCTTC TCTTTCA AATATA TTTAATTTT CC AACCTTC

inhAct[m1-i38]-t TGAAAGA CAATTCATC TCTTTCA AACAAC TTTAATTTT CC AACCTTC

inhAct[m1-i39]-t TGAAAGA CATAAACAC TCTTTCA ATCCCT TTTAATTTT CC AACCTTC

inhAct[m1-i40]-t TGAAAGA CACATATAC TCTTTCA ACAAAC TTTAATTTT CC AACCTTC

inhAct[m1-i41]-t TGAAAGA CATCCTATC TCTTTCA ACTTTC TTTAATTTT CC AACCTTC

inhAct[m1-i42]-t TGAAAGA CAAAACCAC TCTTTCA AATCAC TTTAATTTT CC AACCTTC

inhAct[m1-i43]-t TGAAAGA CATCATAAC TCTTTCA AACACC TTTAATTTT CC AACCTTC

inhAct[m1-i44]-t TGAAAGA CACAAATTC TCTTTCA ATTCAC TTTAATTTT CC AACCTTC

inhAct[m1-i45]-t TGAAAGA CATTATCCC TCTTTCA ATAACT TTTAATTTT CC AACCTTC

inhAct[m1-i46]-t TGAAAGA CAATATCTC TCTTTCA ACTCAT TTTAATTTT CC AACCTTC

inhAct[m1-i47]-t TGAAAGA CACCAATCC TCTTTCA ATTTCA TTTAATTTT CC AACCTTC

inhAct[m1-i48]-t TGAAAGA CATTTTAAC TCTTTCA ATTCCC TTTAATTTT CC AACCTTC

inhAct[m1-i49]-t TGAAAGA CACCTCCTC TCTTTCA AACACA TTTAATTTT CC AACCTTC

inhAct[m1-i50]-t TGAAAGA CATTCTTAC TCTTTCA ACCAAC TTTAATTTT CC AACCTTC

inhAct[m1-i51]-t TGAAAGA CACATTCCC TCTTTCA ATTAAC TTTAATTTT CC AACCTTC
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Name Sequence

inhAct[m1-i52]-t TGAAAGA CAACCATCC TCTTTCA AAACTA TTTAATTTT CC AACCTTC

inhAct[m1-i53]-t TGAAAGA CAAACAACC TCTTTCA ATTTAC TTTAATTTT CC AACCTTC

inhAct[m1-i54]-t TGAAAGA CAATCCTCC TCTTTCA AATACC TTTAATTTT CC AACCTTC

inhAct[m1-i55]-t TGAAAGA CATCACACC TCTTTCA ACCTAT TTTAATTTT CC AACCTTC

inhAct[m1-i56]-t TGAAAGA CAACCAAAC TCTTTCA ATCACT TTTAATTTT CC AACCTTC

inhAct[m1-i57]-t TGAAAGA CATAACCTC TCTTTCA AAATCT TTTAATTTT CC AACCTTC

inhAct[m1-i58]-t TGAAAGA CAATATTCC TCTTTCA ACATCA TTTAATTTT CC AACCTTC

inhAct[m1-i59]-t TGAAAGA CACTATACC TCTTTCA AATAAC TTTAATTTT CC AACCTTC

inhAct[m1-i60]-t TGAAAGA CAAAATCCC TCTTTCA AATCTA TTTAATTTT CC AACCTTC

inhAct[m1-i61]-t TGAAAGA CACTAAACC TCTTTCA ATACAT TTTAATTTT CC AACCTTC

inhAct[m1-i62]-t TGAAAGA CAACAACCC TCTTTCA AAATCC TTTAATTTT CC AACCTTC

inhAct[m1-i63]-t TGAAAGA CAATAAAAC TCTTTCA ACCCTA TTTAATTTT CC AACCTTC

inhAct[m1-i64]-t TGAAAGA CAAATCACC TCTTTCA AAAACA TTTAATTTT CC AACCTTC

inhAct[m1-i65]-t TGAAAGA CATCTTATC TCTTTCA AAACAC TTTAATTTT CC AACCTTC

inhAct[m1-i66]-t TGAAAGA CATACCACC TCTTTCA ATCCTC TTTAATTTT CC AACCTTC

inhAct[m1-i67]-t TGAAAGA CACAAACTC TCTTTCA ACCTCA TTTAATTTT CC AACCTTC

inhAct[m1-i68]-t TGAAAGA CAACCCACC TCTTTCA AATTTT TTTAATTTT CC AACCTTC

inhAct[m1-i69]-t TGAAAGA CATTCACCC TCTTTCA ATATTA TTTAATTTT CC AACCTTC

inhAct[m1-i70]-t TGAAAGA CACCCAATC TCTTTCA ATAAAC TTTAATTTT CC AACCTTC

inhAct[m1-i71]-t TGAAAGA CACACCAAC TCTTTCA AACCAT TTTAATTTT CC AACCTTC

inhAct[m1-i72]-t TGAAAGA CACTCTAAC TCTTTCA ACTTAT TTTAATTTT CC AACCTTC

inhAct[m1-i73]-t TGAAAGA CAACAATTC TCTTTCA ACCTAC TTTAATTTT CC AACCTTC

inhAct[m1-i74]-t TGAAAGA CACCCTACC TCTTTCA ACTCCC TTTAATTTT CC AACCTTC

inhAct[m1-i75]-t TGAAAGA CACACTTCC TCTTTCA AATTAT TTTAATTTT CC AACCTTC

inhAct[m1-i76]-t TGAAAGA CACAATATC TCTTTCA ATCACC TTTAATTTT CC AACCTTC

inhAct[m1-i77]-t TGAAAGA CAAACTCTC TCTTTCA ATCATT TTTAATTTT CC AACCTTC

inhAct[m1-i78]-t TGAAAGA CAATTTCAC TCTTTCA ACCACC TTTAATTTT CC AACCTTC

inhAct[m1-i79]-t TGAAAGA CAACTTACC TCTTTCA ATTCAT TTTAATTTT CC AACCTTC

inhAct[m1-i80]-t TGAAAGA CATCCATAC TCTTTCA AACTAT TTTAATTTT CC AACCTTC

inhAct[m1-i81]-t TGAAAGA CAACTCTAC TCTTTCA ACATTC TTTAATTTT CC AACCTTC

inhAct[m1-i82]-t TGAAAGA CAAATCCTC TCTTTCA ATTTTC TTTAATTTT CC AACCTTC

inhAct[m1-i83]-t TGAAAGA CACCATTAC TCTTTCA AAACAT TTTAATTTT CC AACCTTC

inhAct[m1-i84]-t TGAAAGA CATATATTC TCTTTCA AACTCC TTTAATTTT CC AACCTTC

inhAct[m1-i85]-t TGAAAGA CAATCACTC TCTTTCA ATTACA TTTAATTTT CC AACCTTC

inhAct[m1-i86]-t TGAAAGA CACCAACAC TCTTTCA AAAATA TTTAATTTT CC AACCTTC

inhAct[m1-i87]-t TGAAAGA CAAACCCAC TCTTTCA ATATAT TTTAATTTT CC AACCTTC

inhAct[m1-i88]-t TGAAAGA CATCTCTCC TCTTTCA ATAAAT TTTAATTTT CC AACCTTC

inhAct[m1-i89]-t TGAAAGA CATATCAAC TCTTTCA ATCTCA TTTAATTTT CC AACCTTC

inhAct[m1-i90]-t TGAAAGA CACATCCAC TCTTTCA ACTACA TTTAATTTT CC AACCTTC

inhAct[m1-i91]-t TGAAAGA CATCAAACC TCTTTCA ACAACA TTTAATTTT CC AACCTTC

inhAct[m1-i92]-t TGAAAGA CAAACTTTC TCTTTCA ACACAC TTTAATTTT CC AACCTTC

inhAct[m1-i93]-t TGAAAGA CACCTACCC TCTTTCA ATCTAT TTTAATTTT CC AACCTTC

inhAct[m1-i94]-t TGAAAGA CACCTTTAC TCTTTCA AATTCC TTTAATTTT CC AACCTTC

inhAct[m1-i95]-t TGAAAGA CATTCCTTC TCTTTCA ACATAT TTTAATTTT CC AACCTTC

inhAct[m1-i96]-t TGAAAGA CACAACTCC TCTTTCA ACCATT TTTAATTTT CC AACCTTC

inhAct[m1-i97]-t TGAAAGA CAATACTCC TCTTTCA ATCAAT TTTAATTTT CC AACCTTC

inhAct[m1-i98]-t TGAAAGA CACTTATCC TCTTTCA AACATT TTTAATTTT CC AACCTTC

inhAct[m1-i99]-t TGAAAGA CACATAATC TCTTTCA ACCCTT TTTAATTTT CC AACCTTC

inhAct[m1-i100]-t TGAAAGA CATACCCTC TCTTTCA ACTAAC TTTAATTTT CC AACCTTC
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Table S3: DNA sequences of bottom strands in the learning gates for memory 1.

Name Sequence

inhAct[m1-i1]-b GG AAAATTAAA AAGTGTGGGAAGTTG TCTTTCA TTATCCTCC AAAATTAAA TT

inhAct[m1-i2]-b GG AAAATTAAA TAAGTTGGTTAGATG TCTTTCA TCCAAATTC AAAATTAAA TT

inhAct[m1-i3]-b GG AAAATTAAA AGTATTGTTTAGGTG TCTTTCA ACACCATCC AAAATTAAA TT

inhAct[m1-i4]-b GG AAAATTAAA GATTGTGATGTAATG TCTTTCA CTCCACTCC AAAATTAAA TT

inhAct[m1-i5]-b GG AAAATTAAA GATAATGTAAGGTTG TCTTTCA CCTTATTAC AAAATTAAA TT

inhAct[m1-i6]-b GG AAAATTAAA TAAGATGATGGATTG TCTTTCA CCTCAAAAC AAAATTAAA TT

inhAct[m1-i7]-b GG AAAATTAAA GTGGATGTAGTGATG TCTTTCA ATCTCTCTC AAAATTAAA TT

inhAct[m1-i8]-b GG AAAATTAAA AGGTATGTTGGGATG TCTTTCA CATTTCTTC AAAATTAAA TT

inhAct[m1-i9]-b GG AAAATTAAA TGGGTTGGGAGATTG TCTTTCA AACCCTACC AAAATTAAA TT

inhAct[m1-i10]-b GG AAAATTAAA AAAGTTGTGGAAATG TCTTTCA TCATATCTC AAAATTAAA TT

inhAct[m1-i11]-b GG AAAATTAAA AGTGGTGAAAAGATG TCTTTCA CAATCATAC AAAATTAAA TT

inhAct[m1-i12]-b GG AAAATTAAA GAGTTTGAGTAATTG TCTTTCA CCATTTCCC AAAATTAAA TT

inhAct[m1-i13]-b GG AAAATTAAA GAGGTTGTGATAGTG TCTTTCA AACATAACC AAAATTAAA TT

inhAct[m1-i14]-b GG AAAATTAAA GGGTGTGTTGTTGTG TCTTTCA CTTTAACAC AAAATTAAA TT

inhAct[m1-i15]-b GG AAAATTAAA GGATATGTATGATTG TCTTTCA CACCTATAC AAAATTAAA TT

inhAct[m1-i16]-b GG AAAATTAAA TAGTATGAAAGGGTG TCTTTCA CCCATCAAC AAAATTAAA TT

inhAct[m1-i17]-b GG AAAATTAAA GGGATTGAGTGGATG TCTTTCA ATTCTCATC AAAATTAAA TT

inhAct[m1-i18]-b GG AAAATTAAA GATTATGTGAGTATG TCTTTCA TAATAACCC AAAATTAAA TT

inhAct[m1-i19]-b GG AAAATTAAA AGAAGTGGGTGTATG TCTTTCA TACTTATCC AAAATTAAA TT

inhAct[m1-i20]-b GG AAAATTAAA AGATATGAGAAGGTG TCTTTCA ATTCAACTC AAAATTAAA TT

inhAct[m1-i21]-b GG AAAATTAAA AGGGTTGAAATAATG TCTTTCA CTCACTTCC AAAATTAAA TT

inhAct[m1-i22]-b GG AAAATTAAA GGAAGTGTATTAATG TCTTTCA TATCACATC AAAATTAAA TT

inhAct[m1-i23]-b GG AAAATTAAA ATGTGTGTGTAAATG TCTTTCA TCTCATTCC AAAATTAAA TT

inhAct[m1-i24]-b GG AAAATTAAA GAAGATGGAATTATG TCTTTCA ATCACAAAC AAAATTAAA TT

inhAct[m1-i25]-b GG AAAATTAAA AGGAGTGAAGTGTTG TCTTTCA ATTTCCAAC AAAATTAAA TT

inhAct[m1-i26]-b GG AAAATTAAA GATAGTGGATAGATG TCTTTCA CATAAAACC AAAATTAAA TT

inhAct[m1-i27]-b GG AAAATTAAA TAATTTGTAGGAGTG TCTTTCA TTCCCTTTC AAAATTAAA TT

inhAct[m1-i28]-b GG AAAATTAAA GGGTATGAGGTAGTG TCTTTCA ACTATACAC AAAATTAAA TT

inhAct[m1-i29]-b GG AAAATTAAA TAGAGTGTAGGTATG TCTTTCA TCCTTTTAC AAAATTAAA TT

inhAct[m1-i30]-b GG AAAATTAAA GAAGGTGTGTGAGTG TCTTTCA TATACCACC AAAATTAAA TT

inhAct[m1-i31]-b GG AAAATTAAA TAGAATGTGTAGTTG TCTTTCA TTACCTAAC AAAATTAAA TT

inhAct[m1-i32]-b GG AAAATTAAA TGGTTTGTGAATATG TCTTTCA TCAATATCC AAAATTAAA TT

inhAct[m1-i33]-b GG AAAATTAAA AGTTTTGAATGTGTG TCTTTCA CTCCTCCAC AAAATTAAA TT

inhAct[m1-i34]-b GG AAAATTAAA TAAAGTGGAAAAGTG TCTTTCA ACCCACAAC AAAATTAAA TT

inhAct[m1-i35]-b GG AAAATTAAA GTGGGTGGGTATTTG TCTTTCA AACAACTTC AAAATTAAA TT

inhAct[m1-i36]-b GG AAAATTAAA AATAATGATGTGGTG TCTTTCA AAATACCTC AAAATTAAA TT

inhAct[m1-i37]-b GG AAAATTAAA TATATTGAAGGGATG TCTTTCA TCCCAATAC AAAATTAAA TT

inhAct[m1-i38]-b GG AAAATTAAA GTTGTTGATGAATTG TCTTTCA CATCCTCTC AAAATTAAA TT

inhAct[m1-i39]-b GG AAAATTAAA AGGGATGTGTTTATG TCTTTCA TCTACTTAC AAAATTAAA TT

inhAct[m1-i40]-b GG AAAATTAAA GTTTGTGTATATGTG TCTTTCA AAAACCTAC AAAATTAAA TT

inhAct[m1-i41]-b GG AAAATTAAA GAAAGTGATAGGATG TCTTTCA CAACCACCC AAAATTAAA TT

inhAct[m1-i42]-b GG AAAATTAAA GTGATTGTGGTTTTG TCTTTCA TATTCCCTC AAAATTAAA TT

inhAct[m1-i43]-b GG AAAATTAAA GGTGTTGTTATGATG TCTTTCA ACCTTAAAC AAAATTAAA TT

inhAct[m1-i44]-b GG AAAATTAAA GTGAATGAATTTGTG TCTTTCA CCTATTTTC AAAATTAAA TT

inhAct[m1-i45]-b GG AAAATTAAA AGTTATGGGATAATG TCTTTCA AACCAAATC AAAATTAAA TT

inhAct[m1-i46]-b GG AAAATTAAA ATGAGTGAGATATTG TCTTTCA AATCTACCC AAAATTAAA TT

inhAct[m1-i47]-b GG AAAATTAAA TGAAATGGATTGGTG TCTTTCA TACCCAAAC AAAATTAAA TT

inhAct[m1-i48]-b GG AAAATTAAA GGGAATGTTAAAATG TCTTTCA CCTTCAATC AAAATTAAA TT

inhAct[m1-i49]-b GG AAAATTAAA TGTGTTGAGGAGGTG TCTTTCA TTAATTCCC AAAATTAAA TT

inhAct[m1-i50]-b GG AAAATTAAA GTTGGTGTAAGAATG TCTTTCA ACAAAACTC AAAATTAAA TT

inhAct[m1-i51]-b GG AAAATTAAA GTTAATGGGAATGTG TCTTTCA ATTAATCCC AAAATTAAA TT
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Name Sequence

inhAct[m1-i52]-b GG AAAATTAAA TAGTTTGGATGGTTG TCTTTCA CCAACTCAC AAAATTAAA TT

inhAct[m1-i53]-b GG AAAATTAAA GTAAATGGTTGTTTG TCTTTCA TAAACACTC AAAATTAAA TT

inhAct[m1-i54]-b GG AAAATTAAA GGTATTGGAGGATTG TCTTTCA CCCTCCTTC AAAATTAAA TT

inhAct[m1-i55]-b GG AAAATTAAA ATAGGTGGTGTGATG TCTTTCA CTATATACC AAAATTAAA TT

inhAct[m1-i56]-b GG AAAATTAAA AGTGATGTTTGGTTG TCTTTCA CTACAATTC AAAATTAAA TT

inhAct[m1-i57]-b GG AAAATTAAA AGATTTGAGGTTATG TCTTTCA CATATTCAC AAAATTAAA TT

inhAct[m1-i58]-b GG AAAATTAAA TGATGTGGAATATTG TCTTTCA AAACTTTCC AAAATTAAA TT

inhAct[m1-i59]-b GG AAAATTAAA GTTATTGGTATAGTG TCTTTCA CTCTTCACC AAAATTAAA TT

inhAct[m1-i60]-b GG AAAATTAAA TAGATTGGGATTTTG TCTTTCA ATATTACCC AAAATTAAA TT

inhAct[m1-i61]-b GG AAAATTAAA ATGTATGGTTTAGTG TCTTTCA CATTACACC AAAATTAAA TT

inhAct[m1-i62]-b GG AAAATTAAA GGATTTGGGTTGTTG TCTTTCA ACTTTTACC AAAATTAAA TT

inhAct[m1-i63]-b GG AAAATTAAA TAGGGTGTTTTATTG TCTTTCA ACCATATTC AAAATTAAA TT

inhAct[m1-i64]-b GG AAAATTAAA TGTTTTGGTGATTTG TCTTTCA CCTCCCAAC AAAATTAAA TT

inhAct[m1-i65]-b GG AAAATTAAA GTGTTTGATAAGATG TCTTTCA TCCACTACC AAAATTAAA TT

inhAct[m1-i66]-b GG AAAATTAAA GAGGATGGTGGTATG TCTTTCA TCCCTTATC AAAATTAAA TT

inhAct[m1-i67]-b GG AAAATTAAA TGAGGTGAGTTTGTG TCTTTCA TTTCCATTC AAAATTAAA TT

inhAct[m1-i68]-b GG AAAATTAAA AAAATTGGTGGGTTG TCTTTCA ACACACTTC AAAATTAAA TT

inhAct[m1-i69]-b GG AAAATTAAA TAATATGGGTGAATG TCTTTCA CCACTAATC AAAATTAAA TT

inhAct[m1-i70]-b GG AAAATTAAA GTTTATGATTGGGTG TCTTTCA AATTCACAC AAAATTAAA TT

inhAct[m1-i71]-b GG AAAATTAAA ATGGTTGTTGGTGTG TCTTTCA TTATTCCTC AAAATTAAA TT

inhAct[m1-i72]-b GG AAAATTAAA ATAAGTGTTAGAGTG TCTTTCA ACTCTCTAC AAAATTAAA TT

inhAct[m1-i73]-b GG AAAATTAAA GTAGGTGAATTGTTG TCTTTCA TTCAAACAC AAAATTAAA TT

inhAct[m1-i74]-b GG AAAATTAAA GGGAGTGGTAGGGTG TCTTTCA CTCATTATC AAAATTAAA TT

inhAct[m1-i75]-b GG AAAATTAAA ATAATTGGAAGTGTG TCTTTCA TAACACCAC AAAATTAAA TT

inhAct[m1-i76]-b GG AAAATTAAA GGTGATGATATTGTG TCTTTCA ACATCTATC AAAATTAAA TT

inhAct[m1-i77]-b GG AAAATTAAA AATGATGAGAGTTTG TCTTTCA CAACATATC AAAATTAAA TT

inhAct[m1-i78]-b GG AAAATTAAA GGTGGTGTGAAATTG TCTTTCA AACTCTTAC AAAATTAAA TT

inhAct[m1-i79]-b GG AAAATTAAA ATGAATGGTAAGTTG TCTTTCA ATCCATCAC AAAATTAAA TT

inhAct[m1-i80]-b GG AAAATTAAA ATAGTTGTATGGATG TCTTTCA CTTCTTAAC AAAATTAAA TT

inhAct[m1-i81]-b GG AAAATTAAA GAATGTGTAGAGTTG TCTTTCA ATAACCATC AAAATTAAA TT

inhAct[m1-i82]-b GG AAAATTAAA GAAAATGAGGATTTG TCTTTCA CACTATTTC AAAATTAAA TT

inhAct[m1-i83]-b GG AAAATTAAA ATGTTTGTAATGGTG TCTTTCA ATACTTCTC AAAATTAAA TT

inhAct[m1-i84]-b GG AAAATTAAA GGAGTTGAATATATG TCTTTCA TCACCCTAC AAAATTAAA TT

inhAct[m1-i85]-b GG AAAATTAAA TGTAATGAGTGATTG TCTTTCA TACACCCAC AAAATTAAA TT

inhAct[m1-i86]-b GG AAAATTAAA TATTTTGTGTTGGTG TCTTTCA CCAATCTCC AAAATTAAA TT

inhAct[m1-i87]-b GG AAAATTAAA ATATATGTGGGTTTG TCTTTCA CACAATAAC AAAATTAAA TT

inhAct[m1-i88]-b GG AAAATTAAA ATTTATGGAGAGATG TCTTTCA CAAAATTCC AAAATTAAA TT

inhAct[m1-i89]-b GG AAAATTAAA TGAGATGTTGATATG TCTTTCA AATACTCCC AAAATTAAA TT

inhAct[m1-i90]-b GG AAAATTAAA TGTAGTGTGGATGTG TCTTTCA TCTAACCTC AAAATTAAA TT

inhAct[m1-i91]-b GG AAAATTAAA TGTTGTGGTTTGATG TCTTTCA TCACTCACC AAAATTAAA TT

inhAct[m1-i92]-b GG AAAATTAAA GTGTGTGAAAGTTTG TCTTTCA TTCTCAACC AAAATTAAA TT

inhAct[m1-i93]-b GG AAAATTAAA ATAGATGGGTAGGTG TCTTTCA CTTACATAC AAAATTAAA TT

inhAct[m1-i94]-b GG AAAATTAAA GGAATTGTAAAGGTG TCTTTCA ATCTACTAC AAAATTAAA TT

inhAct[m1-i95]-b GG AAAATTAAA ATATGTGAAGGAATG TCTTTCA CTAAACATC AAAATTAAA TT

inhAct[m1-i96]-b GG AAAATTAAA AATGGTGGAGTTGTG TCTTTCA ACTTAATCC AAAATTAAA TT

inhAct[m1-i97]-b GG AAAATTAAA ATTGATGGAGTATTG TCTTTCA TTTTCTCAC AAAATTAAA TT

inhAct[m1-i98]-b GG AAAATTAAA AATGTTGGATAAGTG TCTTTCA TCTTTACTC AAAATTAAA TT

inhAct[m1-i99]-b GG AAAATTAAA AAGGGTGATTATGTG TCTTTCA TTTATCCAC AAAATTAAA TT

inhAct[m1-i100]-b GG AAAATTAAA GTTAGTGAGGGTATG TCTTTCA TCCTAAATC AAAATTAAA TT

88



Table S4: DNA sequences of top strands in the learning gates for memory 2.

Name Sequence

inhAct[m2-i1]-t AATAGAG CAACTTCCC CTCTATT ACACTT TTTAATTTT AC TCACTAC

inhAct[m2-i2]-t AATAGAG CATCTAACC CTCTATT AACTTA TTTAATTTT AC TCACTAC

inhAct[m2-i3]-t AATAGAG CACCTAAAC CTCTATT AATACT TTTAATTTT AC TCACTAC

inhAct[m2-i4]-t AATAGAG CATTACATC CTCTATT ACAATC TTTAATTTT AC TCACTAC

inhAct[m2-i5]-t AATAGAG CAACCTTAC CTCTATT ATTATC TTTAATTTT AC TCACTAC

inhAct[m2-i6]-t AATAGAG CAATCCATC CTCTATT ATCTTA TTTAATTTT AC TCACTAC

inhAct[m2-i7]-t AATAGAG CATCACTAC CTCTATT ATCCAC TTTAATTTT AC TCACTAC

inhAct[m2-i8]-t AATAGAG CATCCCAAC CTCTATT ATACCT TTTAATTTT AC TCACTAC

inhAct[m2-i9]-t AATAGAG CAATCTCCC CTCTATT AACCCA TTTAATTTT AC TCACTAC

inhAct[m2-i10]-t AATAGAG CATTTCCAC CTCTATT AACTTT TTTAATTTT AC TCACTAC

inhAct[m2-i11]-t AATAGAG CATCTTTTC CTCTATT ACCACT TTTAATTTT AC TCACTAC

inhAct[m2-i12]-t AATAGAG CAATTACTC CTCTATT AAACTC TTTAATTTT AC TCACTAC

inhAct[m2-i13]-t AATAGAG CACTATCAC CTCTATT AACCTC TTTAATTTT AC TCACTAC

inhAct[m2-i14]-t AATAGAG CACAACAAC CTCTATT ACACCC TTTAATTTT AC TCACTAC

inhAct[m2-i15]-t AATAGAG CAATCATAC CTCTATT ATATCC TTTAATTTT AC TCACTAC

inhAct[m2-i16]-t AATAGAG CACCCTTTC CTCTATT ATACTA TTTAATTTT AC TCACTAC

inhAct[m2-i17]-t AATAGAG CATCCACTC CTCTATT AATCCC TTTAATTTT AC TCACTAC

inhAct[m2-i18]-t AATAGAG CATACTCAC CTCTATT ATAATC TTTAATTTT AC TCACTAC

inhAct[m2-i19]-t AATAGAG CATACACCC CTCTATT ACTTCT TTTAATTTT AC TCACTAC

inhAct[m2-i20]-t AATAGAG CACCTTCTC CTCTATT ATATCT TTTAATTTT AC TCACTAC

inhAct[m2-i21]-t AATAGAG CATTATTTC CTCTATT AACCCT TTTAATTTT AC TCACTAC

inhAct[m2-i22]-t AATAGAG CATTAATAC CTCTATT ACTTCC TTTAATTTT AC TCACTAC

inhAct[m2-i23]-t AATAGAG CATTTACAC CTCTATT ACACAT TTTAATTTT AC TCACTAC

inhAct[m2-i24]-t AATAGAG CATAATTCC CTCTATT ATCTTC TTTAATTTT AC TCACTAC

inhAct[m2-i25]-t AATAGAG CAACACTTC CTCTATT ACTCCT TTTAATTTT AC TCACTAC

inhAct[m2-i26]-t AATAGAG CATCTATCC CTCTATT ACTATC TTTAATTTT AC TCACTAC

inhAct[m2-i27]-t AATAGAG CACTCCTAC CTCTATT AAATTA TTTAATTTT AC TCACTAC

inhAct[m2-i28]-t AATAGAG CACTACCTC CTCTATT ATACCC TTTAATTTT AC TCACTAC

inhAct[m2-i29]-t AATAGAG CATACCTAC CTCTATT ACTCTA TTTAATTTT AC TCACTAC

inhAct[m2-i30]-t AATAGAG CACTCACAC CTCTATT ACCTTC TTTAATTTT AC TCACTAC

inhAct[m2-i31]-t AATAGAG CAACTACAC CTCTATT ATTCTA TTTAATTTT AC TCACTAC

inhAct[m2-i32]-t AATAGAG CATATTCAC CTCTATT AAACCA TTTAATTTT AC TCACTAC

inhAct[m2-i33]-t AATAGAG CACACATTC CTCTATT AAAACT TTTAATTTT AC TCACTAC

inhAct[m2-i34]-t AATAGAG CACTTTTCC CTCTATT ACTTTA TTTAATTTT AC TCACTAC

inhAct[m2-i35]-t AATAGAG CAAATACCC CTCTATT ACCCAC TTTAATTTT AC TCACTAC

inhAct[m2-i36]-t AATAGAG CACCACATC CTCTATT ATTATT TTTAATTTT AC TCACTAC

inhAct[m2-i37]-t AATAGAG CATCCCTTC CTCTATT AATATA TTTAATTTT AC TCACTAC

inhAct[m2-i38]-t AATAGAG CAATTCATC CTCTATT AACAAC TTTAATTTT AC TCACTAC

inhAct[m2-i39]-t AATAGAG CATAAACAC CTCTATT ATCCCT TTTAATTTT AC TCACTAC

inhAct[m2-i40]-t AATAGAG CACATATAC CTCTATT ACAAAC TTTAATTTT AC TCACTAC

inhAct[m2-i41]-t AATAGAG CATCCTATC CTCTATT ACTTTC TTTAATTTT AC TCACTAC

inhAct[m2-i42]-t AATAGAG CAAAACCAC CTCTATT AATCAC TTTAATTTT AC TCACTAC

inhAct[m2-i43]-t AATAGAG CATCATAAC CTCTATT AACACC TTTAATTTT AC TCACTAC

inhAct[m2-i44]-t AATAGAG CACAAATTC CTCTATT ATTCAC TTTAATTTT AC TCACTAC

inhAct[m2-i45]-t AATAGAG CATTATCCC CTCTATT ATAACT TTTAATTTT AC TCACTAC

inhAct[m2-i46]-t AATAGAG CAATATCTC CTCTATT ACTCAT TTTAATTTT AC TCACTAC

inhAct[m2-i47]-t AATAGAG CACCAATCC CTCTATT ATTTCA TTTAATTTT AC TCACTAC

inhAct[m2-i48]-t AATAGAG CATTTTAAC CTCTATT ATTCCC TTTAATTTT AC TCACTAC

inhAct[m2-i49]-t AATAGAG CACCTCCTC CTCTATT AACACA TTTAATTTT AC TCACTAC

inhAct[m2-i50]-t AATAGAG CATTCTTAC CTCTATT ACCAAC TTTAATTTT AC TCACTAC

inhAct[m2-i51]-t AATAGAG CACATTCCC CTCTATT ATTAAC TTTAATTTT AC TCACTAC
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Name Sequence

inhAct[m2-i52]-t AATAGAG CAACCATCC CTCTATT AAACTA TTTAATTTT AC TCACTAC

inhAct[m2-i53]-t AATAGAG CAAACAACC CTCTATT ATTTAC TTTAATTTT AC TCACTAC

inhAct[m2-i54]-t AATAGAG CAATCCTCC CTCTATT AATACC TTTAATTTT AC TCACTAC

inhAct[m2-i55]-t AATAGAG CATCACACC CTCTATT ACCTAT TTTAATTTT AC TCACTAC

inhAct[m2-i56]-t AATAGAG CAACCAAAC CTCTATT ATCACT TTTAATTTT AC TCACTAC

inhAct[m2-i57]-t AATAGAG CATAACCTC CTCTATT AAATCT TTTAATTTT AC TCACTAC

inhAct[m2-i58]-t AATAGAG CAATATTCC CTCTATT ACATCA TTTAATTTT AC TCACTAC

inhAct[m2-i59]-t AATAGAG CACTATACC CTCTATT AATAAC TTTAATTTT AC TCACTAC

inhAct[m2-i60]-t AATAGAG CAAAATCCC CTCTATT AATCTA TTTAATTTT AC TCACTAC

inhAct[m2-i61]-t AATAGAG CACTAAACC CTCTATT ATACAT TTTAATTTT AC TCACTAC

inhAct[m2-i62]-t AATAGAG CAACAACCC CTCTATT AAATCC TTTAATTTT AC TCACTAC

inhAct[m2-i63]-t AATAGAG CAATAAAAC CTCTATT ACCCTA TTTAATTTT AC TCACTAC

inhAct[m2-i64]-t AATAGAG CAAATCACC CTCTATT AAAACA TTTAATTTT AC TCACTAC

inhAct[m2-i65]-t AATAGAG CATCTTATC CTCTATT AAACAC TTTAATTTT AC TCACTAC

inhAct[m2-i66]-t AATAGAG CATACCACC CTCTATT ATCCTC TTTAATTTT AC TCACTAC

inhAct[m2-i67]-t AATAGAG CACAAACTC CTCTATT ACCTCA TTTAATTTT AC TCACTAC

inhAct[m2-i68]-t AATAGAG CAACCCACC CTCTATT AATTTT TTTAATTTT AC TCACTAC

inhAct[m2-i69]-t AATAGAG CATTCACCC CTCTATT ATATTA TTTAATTTT AC TCACTAC

inhAct[m2-i70]-t AATAGAG CACCCAATC CTCTATT ATAAAC TTTAATTTT AC TCACTAC

inhAct[m2-i71]-t AATAGAG CACACCAAC CTCTATT AACCAT TTTAATTTT AC TCACTAC

inhAct[m2-i72]-t AATAGAG CACTCTAAC CTCTATT ACTTAT TTTAATTTT AC TCACTAC

inhAct[m2-i73]-t AATAGAG CAACAATTC CTCTATT ACCTAC TTTAATTTT AC TCACTAC

inhAct[m2-i74]-t AATAGAG CACCCTACC CTCTATT ACTCCC TTTAATTTT AC TCACTAC

inhAct[m2-i75]-t AATAGAG CACACTTCC CTCTATT AATTAT TTTAATTTT AC TCACTAC

inhAct[m2-i76]-t AATAGAG CACAATATC CTCTATT ATCACC TTTAATTTT AC TCACTAC

inhAct[m2-i77]-t AATAGAG CAAACTCTC CTCTATT ATCATT TTTAATTTT AC TCACTAC

inhAct[m2-i78]-t AATAGAG CAATTTCAC CTCTATT ACCACC TTTAATTTT AC TCACTAC

inhAct[m2-i79]-t AATAGAG CAACTTACC CTCTATT ATTCAT TTTAATTTT AC TCACTAC

inhAct[m2-i80]-t AATAGAG CATCCATAC CTCTATT AACTAT TTTAATTTT AC TCACTAC

inhAct[m2-i81]-t AATAGAG CAACTCTAC CTCTATT ACATTC TTTAATTTT AC TCACTAC

inhAct[m2-i82]-t AATAGAG CAAATCCTC CTCTATT ATTTTC TTTAATTTT AC TCACTAC

inhAct[m2-i83]-t AATAGAG CACCATTAC CTCTATT AAACAT TTTAATTTT AC TCACTAC

inhAct[m2-i84]-t AATAGAG CATATATTC CTCTATT AACTCC TTTAATTTT AC TCACTAC

inhAct[m2-i85]-t AATAGAG CAATCACTC CTCTATT ATTACA TTTAATTTT AC TCACTAC

inhAct[m2-i86]-t AATAGAG CACCAACAC CTCTATT AAAATA TTTAATTTT AC TCACTAC

inhAct[m2-i87]-t AATAGAG CAAACCCAC CTCTATT ATATAT TTTAATTTT AC TCACTAC

inhAct[m2-i88]-t AATAGAG CATCTCTCC CTCTATT ATAAAT TTTAATTTT AC TCACTAC

inhAct[m2-i89]-t AATAGAG CATATCAAC CTCTATT ATCTCA TTTAATTTT AC TCACTAC

inhAct[m2-i90]-t AATAGAG CACATCCAC CTCTATT ACTACA TTTAATTTT AC TCACTAC

inhAct[m2-i91]-t AATAGAG CATCAAACC CTCTATT ACAACA TTTAATTTT AC TCACTAC

inhAct[m2-i92]-t AATAGAG CAAACTTTC CTCTATT ACACAC TTTAATTTT AC TCACTAC

inhAct[m2-i93]-t AATAGAG CACCTACCC CTCTATT ATCTAT TTTAATTTT AC TCACTAC

inhAct[m2-i94]-t AATAGAG CACCTTTAC CTCTATT AATTCC TTTAATTTT AC TCACTAC

inhAct[m2-i95]-t AATAGAG CATTCCTTC CTCTATT ACATAT TTTAATTTT AC TCACTAC

inhAct[m2-i96]-t AATAGAG CACAACTCC CTCTATT ACCATT TTTAATTTT AC TCACTAC

inhAct[m2-i97]-t AATAGAG CAATACTCC CTCTATT ATCAAT TTTAATTTT AC TCACTAC

inhAct[m2-i98]-t AATAGAG CACTTATCC CTCTATT AACATT TTTAATTTT AC TCACTAC

inhAct[m2-i99]-t AATAGAG CACATAATC CTCTATT ACCCTT TTTAATTTT AC TCACTAC

inhAct[m2-i100]-t AATAGAG CATACCCTC CTCTATT ACTAAC TTTAATTTT AC TCACTAC
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Table S5: DNA sequences of bottom strands in the learning gates for memory 2.

Name Sequence

inhAct[m1-i1]-b GG AAAATTAAA AAGTGTGGGAAGTTG TCTTTCA TTATCCTCC AAAATTAAA TT

inhAct[m1-i2]-b GG AAAATTAAA TAAGTTGGTTAGATG TCTTTCA TCCAAATTC AAAATTAAA TT

inhAct[m1-i3]-b GG AAAATTAAA AGTATTGTTTAGGTG TCTTTCA ACACCATCC AAAATTAAA TT

inhAct[m1-i4]-b GG AAAATTAAA GATTGTGATGTAATG TCTTTCA CTCCACTCC AAAATTAAA TT

inhAct[m1-i5]-b GG AAAATTAAA GATAATGTAAGGTTG TCTTTCA CCTTATTAC AAAATTAAA TT

inhAct[m1-i6]-b GG AAAATTAAA TAAGATGATGGATTG TCTTTCA CCTCAAAAC AAAATTAAA TT

inhAct[m1-i7]-b GG AAAATTAAA GTGGATGTAGTGATG TCTTTCA ATCTCTCTC AAAATTAAA TT

inhAct[m1-i8]-b GG AAAATTAAA AGGTATGTTGGGATG TCTTTCA CATTTCTTC AAAATTAAA TT

inhAct[m1-i9]-b GG AAAATTAAA TGGGTTGGGAGATTG TCTTTCA AACCCTACC AAAATTAAA TT

inhAct[m1-i10]-b GG AAAATTAAA AAAGTTGTGGAAATG TCTTTCA TCATATCTC AAAATTAAA TT

inhAct[m1-i11]-b GG AAAATTAAA AGTGGTGAAAAGATG TCTTTCA CAATCATAC AAAATTAAA TT

inhAct[m1-i12]-b GG AAAATTAAA GAGTTTGAGTAATTG TCTTTCA CCATTTCCC AAAATTAAA TT

inhAct[m1-i13]-b GG AAAATTAAA GAGGTTGTGATAGTG TCTTTCA AACATAACC AAAATTAAA TT

inhAct[m1-i14]-b GG AAAATTAAA GGGTGTGTTGTTGTG TCTTTCA CTTTAACAC AAAATTAAA TT

inhAct[m1-i15]-b GG AAAATTAAA GGATATGTATGATTG TCTTTCA CACCTATAC AAAATTAAA TT

inhAct[m1-i16]-b GG AAAATTAAA TAGTATGAAAGGGTG TCTTTCA CCCATCAAC AAAATTAAA TT

inhAct[m1-i17]-b GG AAAATTAAA GGGATTGAGTGGATG TCTTTCA ATTCTCATC AAAATTAAA TT

inhAct[m1-i18]-b GG AAAATTAAA GATTATGTGAGTATG TCTTTCA TAATAACCC AAAATTAAA TT

inhAct[m1-i19]-b GG AAAATTAAA AGAAGTGGGTGTATG TCTTTCA TACTTATCC AAAATTAAA TT

inhAct[m1-i20]-b GG AAAATTAAA AGATATGAGAAGGTG TCTTTCA ATTCAACTC AAAATTAAA TT

inhAct[m1-i21]-b GG AAAATTAAA AGGGTTGAAATAATG TCTTTCA CTCACTTCC AAAATTAAA TT

inhAct[m1-i22]-b GG AAAATTAAA GGAAGTGTATTAATG TCTTTCA TATCACATC AAAATTAAA TT

inhAct[m1-i23]-b GG AAAATTAAA ATGTGTGTGTAAATG TCTTTCA TCTCATTCC AAAATTAAA TT

inhAct[m1-i24]-b GG AAAATTAAA GAAGATGGAATTATG TCTTTCA ATCACAAAC AAAATTAAA TT

inhAct[m1-i25]-b GG AAAATTAAA AGGAGTGAAGTGTTG TCTTTCA ATTTCCAAC AAAATTAAA TT

inhAct[m1-i26]-b GG AAAATTAAA GATAGTGGATAGATG TCTTTCA CATAAAACC AAAATTAAA TT

inhAct[m1-i27]-b GG AAAATTAAA TAATTTGTAGGAGTG TCTTTCA TTCCCTTTC AAAATTAAA TT

inhAct[m1-i28]-b GG AAAATTAAA GGGTATGAGGTAGTG TCTTTCA ACTATACAC AAAATTAAA TT

inhAct[m1-i29]-b GG AAAATTAAA TAGAGTGTAGGTATG TCTTTCA TCCTTTTAC AAAATTAAA TT

inhAct[m1-i30]-b GG AAAATTAAA GAAGGTGTGTGAGTG TCTTTCA TATACCACC AAAATTAAA TT

inhAct[m1-i31]-b GG AAAATTAAA TAGAATGTGTAGTTG TCTTTCA TTACCTAAC AAAATTAAA TT

inhAct[m1-i32]-b GG AAAATTAAA TGGTTTGTGAATATG TCTTTCA TCAATATCC AAAATTAAA TT

inhAct[m1-i33]-b GG AAAATTAAA AGTTTTGAATGTGTG TCTTTCA CTCCTCCAC AAAATTAAA TT

inhAct[m1-i34]-b GG AAAATTAAA TAAAGTGGAAAAGTG TCTTTCA ACCCACAAC AAAATTAAA TT

inhAct[m1-i35]-b GG AAAATTAAA GTGGGTGGGTATTTG TCTTTCA AACAACTTC AAAATTAAA TT

inhAct[m1-i36]-b GG AAAATTAAA AATAATGATGTGGTG TCTTTCA AAATACCTC AAAATTAAA TT

inhAct[m1-i37]-b GG AAAATTAAA TATATTGAAGGGATG TCTTTCA TCCCAATAC AAAATTAAA TT

inhAct[m1-i38]-b GG AAAATTAAA GTTGTTGATGAATTG TCTTTCA CATCCTCTC AAAATTAAA TT

inhAct[m1-i39]-b GG AAAATTAAA AGGGATGTGTTTATG TCTTTCA TCTACTTAC AAAATTAAA TT

inhAct[m1-i40]-b GG AAAATTAAA GTTTGTGTATATGTG TCTTTCA AAAACCTAC AAAATTAAA TT

inhAct[m1-i41]-b GG AAAATTAAA GAAAGTGATAGGATG TCTTTCA CAACCACCC AAAATTAAA TT

inhAct[m1-i42]-b GG AAAATTAAA GTGATTGTGGTTTTG TCTTTCA TATTCCCTC AAAATTAAA TT

inhAct[m1-i43]-b GG AAAATTAAA GGTGTTGTTATGATG TCTTTCA ACCTTAAAC AAAATTAAA TT

inhAct[m1-i44]-b GG AAAATTAAA GTGAATGAATTTGTG TCTTTCA CCTATTTTC AAAATTAAA TT

inhAct[m1-i45]-b GG AAAATTAAA AGTTATGGGATAATG TCTTTCA AACCAAATC AAAATTAAA TT

inhAct[m1-i46]-b GG AAAATTAAA ATGAGTGAGATATTG TCTTTCA AATCTACCC AAAATTAAA TT

inhAct[m1-i47]-b GG AAAATTAAA TGAAATGGATTGGTG TCTTTCA TACCCAAAC AAAATTAAA TT

inhAct[m1-i48]-b GG AAAATTAAA GGGAATGTTAAAATG TCTTTCA CCTTCAATC AAAATTAAA TT

inhAct[m1-i49]-b GG AAAATTAAA TGTGTTGAGGAGGTG TCTTTCA TTAATTCCC AAAATTAAA TT

inhAct[m1-i50]-b GG AAAATTAAA GTTGGTGTAAGAATG TCTTTCA ACAAAACTC AAAATTAAA TT

inhAct[m1-i51]-b GG AAAATTAAA GTTAATGGGAATGTG TCTTTCA ATTAATCCC AAAATTAAA TT
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Name Sequence

inhAct[m1-i52]-b GG AAAATTAAA TAGTTTGGATGGTTG TCTTTCA CCAACTCAC AAAATTAAA TT

inhAct[m1-i53]-b GG AAAATTAAA GTAAATGGTTGTTTG TCTTTCA TAAACACTC AAAATTAAA TT

inhAct[m1-i54]-b GG AAAATTAAA GGTATTGGAGGATTG TCTTTCA CCCTCCTTC AAAATTAAA TT

inhAct[m1-i55]-b GG AAAATTAAA ATAGGTGGTGTGATG TCTTTCA CTATATACC AAAATTAAA TT

inhAct[m1-i56]-b GG AAAATTAAA AGTGATGTTTGGTTG TCTTTCA CTACAATTC AAAATTAAA TT

inhAct[m1-i57]-b GG AAAATTAAA AGATTTGAGGTTATG TCTTTCA CATATTCAC AAAATTAAA TT

inhAct[m1-i58]-b GG AAAATTAAA TGATGTGGAATATTG TCTTTCA AAACTTTCC AAAATTAAA TT

inhAct[m1-i59]-b GG AAAATTAAA GTTATTGGTATAGTG TCTTTCA CTCTTCACC AAAATTAAA TT

inhAct[m1-i60]-b GG AAAATTAAA TAGATTGGGATTTTG TCTTTCA ATATTACCC AAAATTAAA TT

inhAct[m1-i61]-b GG AAAATTAAA ATGTATGGTTTAGTG TCTTTCA CATTACACC AAAATTAAA TT

inhAct[m1-i62]-b GG AAAATTAAA GGATTTGGGTTGTTG TCTTTCA ACTTTTACC AAAATTAAA TT

inhAct[m1-i63]-b GG AAAATTAAA TAGGGTGTTTTATTG TCTTTCA ACCATATTC AAAATTAAA TT

inhAct[m1-i64]-b GG AAAATTAAA TGTTTTGGTGATTTG TCTTTCA CCTCCCAAC AAAATTAAA TT

inhAct[m1-i65]-b GG AAAATTAAA GTGTTTGATAAGATG TCTTTCA TCCACTACC AAAATTAAA TT

inhAct[m1-i66]-b GG AAAATTAAA GAGGATGGTGGTATG TCTTTCA TCCCTTATC AAAATTAAA TT

inhAct[m1-i67]-b GG AAAATTAAA TGAGGTGAGTTTGTG TCTTTCA TTTCCATTC AAAATTAAA TT

inhAct[m1-i68]-b GG AAAATTAAA AAAATTGGTGGGTTG TCTTTCA ACACACTTC AAAATTAAA TT

inhAct[m1-i69]-b GG AAAATTAAA TAATATGGGTGAATG TCTTTCA CCACTAATC AAAATTAAA TT

inhAct[m1-i70]-b GG AAAATTAAA GTTTATGATTGGGTG TCTTTCA AATTCACAC AAAATTAAA TT

inhAct[m1-i71]-b GG AAAATTAAA ATGGTTGTTGGTGTG TCTTTCA TTATTCCTC AAAATTAAA TT

inhAct[m1-i72]-b GG AAAATTAAA ATAAGTGTTAGAGTG TCTTTCA ACTCTCTAC AAAATTAAA TT

inhAct[m1-i73]-b GG AAAATTAAA GTAGGTGAATTGTTG TCTTTCA TTCAAACAC AAAATTAAA TT

inhAct[m1-i74]-b GG AAAATTAAA GGGAGTGGTAGGGTG TCTTTCA CTCATTATC AAAATTAAA TT

inhAct[m1-i75]-b GG AAAATTAAA ATAATTGGAAGTGTG TCTTTCA TAACACCAC AAAATTAAA TT

inhAct[m1-i76]-b GG AAAATTAAA GGTGATGATATTGTG TCTTTCA ACATCTATC AAAATTAAA TT

inhAct[m1-i77]-b GG AAAATTAAA AATGATGAGAGTTTG TCTTTCA CAACATATC AAAATTAAA TT

inhAct[m1-i78]-b GG AAAATTAAA GGTGGTGTGAAATTG TCTTTCA AACTCTTAC AAAATTAAA TT

inhAct[m1-i79]-b GG AAAATTAAA ATGAATGGTAAGTTG TCTTTCA ATCCATCAC AAAATTAAA TT

inhAct[m1-i80]-b GG AAAATTAAA ATAGTTGTATGGATG TCTTTCA CTTCTTAAC AAAATTAAA TT

inhAct[m1-i81]-b GG AAAATTAAA GAATGTGTAGAGTTG TCTTTCA ATAACCATC AAAATTAAA TT

inhAct[m1-i82]-b GG AAAATTAAA GAAAATGAGGATTTG TCTTTCA CACTATTTC AAAATTAAA TT

inhAct[m1-i83]-b GG AAAATTAAA ATGTTTGTAATGGTG TCTTTCA ATACTTCTC AAAATTAAA TT

inhAct[m1-i84]-b GG AAAATTAAA GGAGTTGAATATATG TCTTTCA TCACCCTAC AAAATTAAA TT

inhAct[m1-i85]-b GG AAAATTAAA TGTAATGAGTGATTG TCTTTCA TACACCCAC AAAATTAAA TT

inhAct[m1-i86]-b GG AAAATTAAA TATTTTGTGTTGGTG TCTTTCA CCAATCTCC AAAATTAAA TT

inhAct[m1-i87]-b GG AAAATTAAA ATATATGTGGGTTTG TCTTTCA CACAATAAC AAAATTAAA TT

inhAct[m1-i88]-b GG AAAATTAAA ATTTATGGAGAGATG TCTTTCA CAAAATTCC AAAATTAAA TT

inhAct[m1-i89]-b GG AAAATTAAA TGAGATGTTGATATG TCTTTCA AATACTCCC AAAATTAAA TT

inhAct[m1-i90]-b GG AAAATTAAA TGTAGTGTGGATGTG TCTTTCA TCTAACCTC AAAATTAAA TT

inhAct[m1-i91]-b GG AAAATTAAA TGTTGTGGTTTGATG TCTTTCA TCACTCACC AAAATTAAA TT

inhAct[m1-i92]-b GG AAAATTAAA GTGTGTGAAAGTTTG TCTTTCA TTCTCAACC AAAATTAAA TT

inhAct[m1-i93]-b GG AAAATTAAA ATAGATGGGTAGGTG TCTTTCA CTTACATAC AAAATTAAA TT

inhAct[m1-i94]-b GG AAAATTAAA GGAATTGTAAAGGTG TCTTTCA ATCTACTAC AAAATTAAA TT

inhAct[m1-i95]-b GG AAAATTAAA ATATGTGAAGGAATG TCTTTCA CTAAACATC AAAATTAAA TT

inhAct[m1-i96]-b GG AAAATTAAA AATGGTGGAGTTGTG TCTTTCA ACTTAATCC AAAATTAAA TT

inhAct[m1-i97]-b GG AAAATTAAA ATTGATGGAGTATTG TCTTTCA TTTTCTCAC AAAATTAAA TT

inhAct[m1-i98]-b GG AAAATTAAA AATGTTGGATAAGTG TCTTTCA TCTTTACTC AAAATTAAA TT

inhAct[m1-i99]-b GG AAAATTAAA AAGGGTGATTATGTG TCTTTCA TTTATCCAC AAAATTAAA TT

inhAct[m1-i100]-b GG AAAATTAAA GTTAGTGAGGGTATG TCTTTCA TCCTAAATC AAAATTAAA TT
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Table S6: DNA sequences of top strands in the weight gates for memory 1.

Name Sequence

inhW[m1-i1]-t CACACTATAATTCCA TCT CAACTTCCCACACTT AA TTTAATTTT GGAGGATAA TGAAAGA

inhW[m1-i2]-t CACACTATAATTCCA TCT CATCTAACCAACTTA AA TTTAATTTT GAATTTGGA TGAAAGA

inhW[m1-i3]-t CACACTATAATTCCA TCT CACCTAAACAATACT AA TTTAATTTT GGATGGTGT TGAAAGA

inhW[m1-i4]-t CACACTATAATTCCA TCT CATTACATCACAATC AA TTTAATTTT GGAGTGGAG TGAAAGA

inhW[m1-i5]-t CACACTATAATTCCA TCT CAACCTTACATTATC AA TTTAATTTT GTAATAAGG TGAAAGA

inhW[m1-i6]-t CACACTATAATTCCA TCT CAATCCATCATCTTA AA TTTAATTTT GTTTTGAGG TGAAAGA

inhW[m1-i7]-t CACACTATAATTCCA TCT CATCACTACATCCAC AA TTTAATTTT GAGAGAGAT TGAAAGA

inhW[m1-i8]-t CACACTATAATTCCA TCT CATCCCAACATACCT AA TTTAATTTT GAAGAAATG TGAAAGA

inhW[m1-i9]-t CACACTATAATTCCA TCT CAATCTCCCAACCCA AA TTTAATTTT GGTAGGGTT TGAAAGA

inhW[m1-i10]-t CACACTATAATTCCA TCT CATTTCCACAACTTT AA TTTAATTTT GAGATATGA TGAAAGA

inhW[m1-i11]-t CACACTATAATTCCA TCT CATCTTTTCACCACT AA TTTAATTTT GTATGATTG TGAAAGA

inhW[m1-i12]-t CACACTATAATTCCA TCT CAATTACTCAAACTC AA TTTAATTTT GGGAAATGG TGAAAGA

inhW[m1-i13]-t CACACTATAATTCCA TCT CACTATCACAACCTC AA TTTAATTTT GGTTATGTT TGAAAGA

inhW[m1-i14]-t CACACTATAATTCCA TCT CACAACAACACACCC AA TTTAATTTT GTGTTAAAG TGAAAGA

inhW[m1-i15]-t CACACTATAATTCCA TCT CAATCATACATATCC AA TTTAATTTT GTATAGGTG TGAAAGA

inhW[m1-i16]-t CACACTATAATTCCA TCT CACCCTTTCATACTA AA TTTAATTTT GTTGATGGG TGAAAGA

inhW[m1-i17]-t CACACTATAATTCCA TCT CATCCACTCAATCCC AA TTTAATTTT GATGAGAAT TGAAAGA

inhW[m1-i18]-t CACACTATAATTCCA TCT CATACTCACATAATC AA TTTAATTTT GGGTTATTA TGAAAGA

inhW[m1-i19]-t CACACTATAATTCCA TCT CATACACCCACTTCT AA TTTAATTTT GGATAAGTA TGAAAGA

inhW[m1-i20]-t CACACTATAATTCCA TCT CACCTTCTCATATCT AA TTTAATTTT GAGTTGAAT TGAAAGA

inhW[m1-i21]-t CACACTATAATTCCA TCT CATTATTTCAACCCT AA TTTAATTTT GGAAGTGAG TGAAAGA

inhW[m1-i22]-t CACACTATAATTCCA TCT CATTAATACACTTCC AA TTTAATTTT GATGTGATA TGAAAGA

inhW[m1-i23]-t CACACTATAATTCCA TCT CATTTACACACACAT AA TTTAATTTT GGAATGAGA TGAAAGA

inhW[m1-i24]-t CACACTATAATTCCA TCT CATAATTCCATCTTC AA TTTAATTTT GTTTGTGAT TGAAAGA

inhW[m1-i25]-t CACACTATAATTCCA TCT CAACACTTCACTCCT AA TTTAATTTT GTTGGAAAT TGAAAGA

inhW[m1-i26]-t CACACTATAATTCCA TCT CATCTATCCACTATC AA TTTAATTTT GGTTTTATG TGAAAGA

inhW[m1-i27]-t CACACTATAATTCCA TCT CACTCCTACAAATTA AA TTTAATTTT GAAAGGGAA TGAAAGA

inhW[m1-i28]-t CACACTATAATTCCA TCT CACTACCTCATACCC AA TTTAATTTT GTGTATAGT TGAAAGA

inhW[m1-i29]-t CACACTATAATTCCA TCT CATACCTACACTCTA AA TTTAATTTT GTAAAAGGA TGAAAGA

inhW[m1-i30]-t CACACTATAATTCCA TCT CACTCACACACCTTC AA TTTAATTTT GGTGGTATA TGAAAGA

inhW[m1-i31]-t CACACTATAATTCCA TCT CAACTACACATTCTA AA TTTAATTTT GTTAGGTAA TGAAAGA

inhW[m1-i32]-t CACACTATAATTCCA TCT CATATTCACAAACCA AA TTTAATTTT GGATATTGA TGAAAGA

inhW[m1-i33]-t CACACTATAATTCCA TCT CACACATTCAAAACT AA TTTAATTTT GTGGAGGAG TGAAAGA

inhW[m1-i34]-t CACACTATAATTCCA TCT CACTTTTCCACTTTA AA TTTAATTTT GTTGTGGGT TGAAAGA

inhW[m1-i35]-t CACACTATAATTCCA TCT CAAATACCCACCCAC AA TTTAATTTT GAAGTTGTT TGAAAGA

inhW[m1-i36]-t CACACTATAATTCCA TCT CACCACATCATTATT AA TTTAATTTT GAGGTATTT TGAAAGA

inhW[m1-i37]-t CACACTATAATTCCA TCT CATCCCTTCAATATA AA TTTAATTTT GTATTGGGA TGAAAGA

inhW[m1-i38]-t CACACTATAATTCCA TCT CAATTCATCAACAAC AA TTTAATTTT GAGAGGATG TGAAAGA

inhW[m1-i39]-t CACACTATAATTCCA TCT CATAAACACATCCCT AA TTTAATTTT GTAAGTAGA TGAAAGA

inhW[m1-i40]-t CACACTATAATTCCA TCT CACATATACACAAAC AA TTTAATTTT GTAGGTTTT TGAAAGA

inhW[m1-i41]-t CACACTATAATTCCA TCT CATCCTATCACTTTC AA TTTAATTTT GGGTGGTTG TGAAAGA

inhW[m1-i42]-t CACACTATAATTCCA TCT CAAAACCACAATCAC AA TTTAATTTT GAGGGAATA TGAAAGA

inhW[m1-i43]-t CACACTATAATTCCA TCT CATCATAACAACACC AA TTTAATTTT GTTTAAGGT TGAAAGA

inhW[m1-i44]-t CACACTATAATTCCA TCT CACAAATTCATTCAC AA TTTAATTTT GAAAATAGG TGAAAGA

inhW[m1-i45]-t CACACTATAATTCCA TCT CATTATCCCATAACT AA TTTAATTTT GATTTGGTT TGAAAGA

inhW[m1-i46]-t CACACTATAATTCCA TCT CAATATCTCACTCAT AA TTTAATTTT GGGTAGATT TGAAAGA

inhW[m1-i47]-t CACACTATAATTCCA TCT CACCAATCCATTTCA AA TTTAATTTT GTTTGGGTA TGAAAGA

inhW[m1-i48]-t CACACTATAATTCCA TCT CATTTTAACATTCCC AA TTTAATTTT GATTGAAGG TGAAAGA

inhW[m1-i49]-t CACACTATAATTCCA TCT CACCTCCTCAACACA AA TTTAATTTT GGGAATTAA TGAAAGA

inhW[m1-i50]-t CACACTATAATTCCA TCT CATTCTTACACCAAC AA TTTAATTTT GAGTTTTGT TGAAAGA

inhW[m1-i51]-t CACACTATAATTCCA TCT CACATTCCCATTAAC AA TTTAATTTT GGGATTAAT TGAAAGA
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Name Sequence

inhW[m1-i52]-t CACACTATAATTCCA TCT CAACCATCCAAACTA AA TTTAATTTT GTGAGTTGG TGAAAGA

inhW[m1-i53]-t CACACTATAATTCCA TCT CAAACAACCATTTAC AA TTTAATTTT GAGTGTTTA TGAAAGA

inhW[m1-i54]-t CACACTATAATTCCA TCT CAATCCTCCAATACC AA TTTAATTTT GAAGGAGGG TGAAAGA

inhW[m1-i55]-t CACACTATAATTCCA TCT CATCACACCACCTAT AA TTTAATTTT GGTATATAG TGAAAGA

inhW[m1-i56]-t CACACTATAATTCCA TCT CAACCAAACATCACT AA TTTAATTTT GAATTGTAG TGAAAGA

inhW[m1-i57]-t CACACTATAATTCCA TCT CATAACCTCAAATCT AA TTTAATTTT GTGAATATG TGAAAGA

inhW[m1-i58]-t CACACTATAATTCCA TCT CAATATTCCACATCA AA TTTAATTTT GGAAAGTTT TGAAAGA

inhW[m1-i59]-t CACACTATAATTCCA TCT CACTATACCAATAAC AA TTTAATTTT GGTGAAGAG TGAAAGA

inhW[m1-i60]-t CACACTATAATTCCA TCT CAAAATCCCAATCTA AA TTTAATTTT GGGTAATAT TGAAAGA

inhW[m1-i61]-t CACACTATAATTCCA TCT CACTAAACCATACAT AA TTTAATTTT GGTGTAATG TGAAAGA

inhW[m1-i62]-t CACACTATAATTCCA TCT CAACAACCCAAATCC AA TTTAATTTT GGTAAAAGT TGAAAGA

inhW[m1-i63]-t CACACTATAATTCCA TCT CAATAAAACACCCTA AA TTTAATTTT GAATATGGT TGAAAGA

inhW[m1-i64]-t CACACTATAATTCCA TCT CAAATCACCAAAACA AA TTTAATTTT GTTGGGAGG TGAAAGA

inhW[m1-i65]-t CACACTATAATTCCA TCT CATCTTATCAAACAC AA TTTAATTTT GGTAGTGGA TGAAAGA

inhW[m1-i66]-t CACACTATAATTCCA TCT CATACCACCATCCTC AA TTTAATTTT GATAAGGGA TGAAAGA

inhW[m1-i67]-t CACACTATAATTCCA TCT CACAAACTCACCTCA AA TTTAATTTT GAATGGAAA TGAAAGA

inhW[m1-i68]-t CACACTATAATTCCA TCT CAACCCACCAATTTT AA TTTAATTTT GAAGTGTGT TGAAAGA

inhW[m1-i69]-t CACACTATAATTCCA TCT CATTCACCCATATTA AA TTTAATTTT GATTAGTGG TGAAAGA

inhW[m1-i70]-t CACACTATAATTCCA TCT CACCCAATCATAAAC AA TTTAATTTT GTGTGAATT TGAAAGA

inhW[m1-i71]-t CACACTATAATTCCA TCT CACACCAACAACCAT AA TTTAATTTT GAGGAATAA TGAAAGA

inhW[m1-i72]-t CACACTATAATTCCA TCT CACTCTAACACTTAT AA TTTAATTTT GTAGAGAGT TGAAAGA

inhW[m1-i73]-t CACACTATAATTCCA TCT CAACAATTCACCTAC AA TTTAATTTT GTGTTTGAA TGAAAGA

inhW[m1-i74]-t CACACTATAATTCCA TCT CACCCTACCACTCCC AA TTTAATTTT GATAATGAG TGAAAGA

inhW[m1-i75]-t CACACTATAATTCCA TCT CACACTTCCAATTAT AA TTTAATTTT GTGGTGTTA TGAAAGA

inhW[m1-i76]-t CACACTATAATTCCA TCT CACAATATCATCACC AA TTTAATTTT GATAGATGT TGAAAGA

inhW[m1-i77]-t CACACTATAATTCCA TCT CAAACTCTCATCATT AA TTTAATTTT GATATGTTG TGAAAGA

inhW[m1-i78]-t CACACTATAATTCCA TCT CAATTTCACACCACC AA TTTAATTTT GTAAGAGTT TGAAAGA

inhW[m1-i79]-t CACACTATAATTCCA TCT CAACTTACCATTCAT AA TTTAATTTT GTGATGGAT TGAAAGA

inhW[m1-i80]-t CACACTATAATTCCA TCT CATCCATACAACTAT AA TTTAATTTT GTTAAGAAG TGAAAGA

inhW[m1-i81]-t CACACTATAATTCCA TCT CAACTCTACACATTC AA TTTAATTTT GATGGTTAT TGAAAGA

inhW[m1-i82]-t CACACTATAATTCCA TCT CAAATCCTCATTTTC AA TTTAATTTT GAAATAGTG TGAAAGA

inhW[m1-i83]-t CACACTATAATTCCA TCT CACCATTACAAACAT AA TTTAATTTT GAGAAGTAT TGAAAGA

inhW[m1-i84]-t CACACTATAATTCCA TCT CATATATTCAACTCC AA TTTAATTTT GTAGGGTGA TGAAAGA

inhW[m1-i85]-t CACACTATAATTCCA TCT CAATCACTCATTACA AA TTTAATTTT GTGGGTGTA TGAAAGA

inhW[m1-i86]-t CACACTATAATTCCA TCT CACCAACACAAAATA AA TTTAATTTT GGAGATTGG TGAAAGA

inhW[m1-i87]-t CACACTATAATTCCA TCT CAAACCCACATATAT AA TTTAATTTT GTTATTGTG TGAAAGA

inhW[m1-i88]-t CACACTATAATTCCA TCT CATCTCTCCATAAAT AA TTTAATTTT GGAATTTTG TGAAAGA

inhW[m1-i89]-t CACACTATAATTCCA TCT CATATCAACATCTCA AA TTTAATTTT GGGAGTATT TGAAAGA

inhW[m1-i90]-t CACACTATAATTCCA TCT CACATCCACACTACA AA TTTAATTTT GAGGTTAGA TGAAAGA

inhW[m1-i91]-t CACACTATAATTCCA TCT CATCAAACCACAACA AA TTTAATTTT GGTGAGTGA TGAAAGA

inhW[m1-i92]-t CACACTATAATTCCA TCT CAAACTTTCACACAC AA TTTAATTTT GGTTGAGAA TGAAAGA

inhW[m1-i93]-t CACACTATAATTCCA TCT CACCTACCCATCTAT AA TTTAATTTT GTATGTAAG TGAAAGA

inhW[m1-i94]-t CACACTATAATTCCA TCT CACCTTTACAATTCC AA TTTAATTTT GTAGTAGAT TGAAAGA

inhW[m1-i95]-t CACACTATAATTCCA TCT CATTCCTTCACATAT AA TTTAATTTT GATGTTTAG TGAAAGA

inhW[m1-i96]-t CACACTATAATTCCA TCT CACAACTCCACCATT AA TTTAATTTT GGATTAAGT TGAAAGA

inhW[m1-i97]-t CACACTATAATTCCA TCT CAATACTCCATCAAT AA TTTAATTTT GTGAGAAAA TGAAAGA

inhW[m1-i98]-t CACACTATAATTCCA TCT CACTTATCCAACATT AA TTTAATTTT GAGTAAAGA TGAAAGA

inhW[m1-i99]-t CACACTATAATTCCA TCT CACATAATCACCCTT AA TTTAATTTT GTGGATAAA TGAAAGA

inhW[m1-i100]-t CACACTATAATTCCA TCT CATACCCTCACTAAC AA TTTAATTTT GATTTAGGA TGAAAGA
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Table S7: DNA sequences of bottom strands in the weight gates for memory 1.

Name Sequence

inhW[m1-i1]-b CA TTATCCTCC AAAATTAAA AAGTGTGGGAAGTTG AGA TG

inhW[m1-i2]-b CA TCCAAATTC AAAATTAAA TAAGTTGGTTAGATG AGA TG

inhW[m1-i3]-b CA ACACCATCC AAAATTAAA AGTATTGTTTAGGTG AGA TG

inhW[m1-i4]-b CA CTCCACTCC AAAATTAAA GATTGTGATGTAATG AGA TG

inhW[m1-i5]-b CA CCTTATTAC AAAATTAAA GATAATGTAAGGTTG AGA TG

inhW[m1-i6]-b CA CCTCAAAAC AAAATTAAA TAAGATGATGGATTG AGA TG

inhW[m1-i7]-b CA ATCTCTCTC AAAATTAAA GTGGATGTAGTGATG AGA TG

inhW[m1-i8]-b CA CATTTCTTC AAAATTAAA AGGTATGTTGGGATG AGA TG

inhW[m1-i9]-b CA AACCCTACC AAAATTAAA TGGGTTGGGAGATTG AGA TG

inhW[m1-i10]-b CA TCATATCTC AAAATTAAA AAAGTTGTGGAAATG AGA TG

inhW[m1-i11]-b CA CAATCATAC AAAATTAAA AGTGGTGAAAAGATG AGA TG

inhW[m1-i12]-b CA CCATTTCCC AAAATTAAA GAGTTTGAGTAATTG AGA TG

inhW[m1-i13]-b CA AACATAACC AAAATTAAA GAGGTTGTGATAGTG AGA TG

inhW[m1-i14]-b CA CTTTAACAC AAAATTAAA GGGTGTGTTGTTGTG AGA TG

inhW[m1-i15]-b CA CACCTATAC AAAATTAAA GGATATGTATGATTG AGA TG

inhW[m1-i16]-b CA CCCATCAAC AAAATTAAA TAGTATGAAAGGGTG AGA TG

inhW[m1-i17]-b CA ATTCTCATC AAAATTAAA GGGATTGAGTGGATG AGA TG

inhW[m1-i18]-b CA TAATAACCC AAAATTAAA GATTATGTGAGTATG AGA TG

inhW[m1-i19]-b CA TACTTATCC AAAATTAAA AGAAGTGGGTGTATG AGA TG

inhW[m1-i20]-b CA ATTCAACTC AAAATTAAA AGATATGAGAAGGTG AGA TG

inhW[m1-i21]-b CA CTCACTTCC AAAATTAAA AGGGTTGAAATAATG AGA TG

inhW[m1-i22]-b CA TATCACATC AAAATTAAA GGAAGTGTATTAATG AGA TG

inhW[m1-i23]-b CA TCTCATTCC AAAATTAAA ATGTGTGTGTAAATG AGA TG

inhW[m1-i24]-b CA ATCACAAAC AAAATTAAA GAAGATGGAATTATG AGA TG

inhW[m1-i25]-b CA ATTTCCAAC AAAATTAAA AGGAGTGAAGTGTTG AGA TG

inhW[m1-i26]-b CA CATAAAACC AAAATTAAA GATAGTGGATAGATG AGA TG

inhW[m1-i27]-b CA TTCCCTTTC AAAATTAAA TAATTTGTAGGAGTG AGA TG

inhW[m1-i28]-b CA ACTATACAC AAAATTAAA GGGTATGAGGTAGTG AGA TG

inhW[m1-i29]-b CA TCCTTTTAC AAAATTAAA TAGAGTGTAGGTATG AGA TG

inhW[m1-i30]-b CA TATACCACC AAAATTAAA GAAGGTGTGTGAGTG AGA TG

inhW[m1-i31]-b CA TTACCTAAC AAAATTAAA TAGAATGTGTAGTTG AGA TG

inhW[m1-i32]-b CA TCAATATCC AAAATTAAA TGGTTTGTGAATATG AGA TG

inhW[m1-i33]-b CA CTCCTCCAC AAAATTAAA AGTTTTGAATGTGTG AGA TG

inhW[m1-i34]-b CA ACCCACAAC AAAATTAAA TAAAGTGGAAAAGTG AGA TG

inhW[m1-i35]-b CA AACAACTTC AAAATTAAA GTGGGTGGGTATTTG AGA TG

inhW[m1-i36]-b CA AAATACCTC AAAATTAAA AATAATGATGTGGTG AGA TG

inhW[m1-i37]-b CA TCCCAATAC AAAATTAAA TATATTGAAGGGATG AGA TG

inhW[m1-i38]-b CA CATCCTCTC AAAATTAAA GTTGTTGATGAATTG AGA TG

inhW[m1-i39]-b CA TCTACTTAC AAAATTAAA AGGGATGTGTTTATG AGA TG

inhW[m1-i40]-b CA AAAACCTAC AAAATTAAA GTTTGTGTATATGTG AGA TG

inhW[m1-i41]-b CA CAACCACCC AAAATTAAA GAAAGTGATAGGATG AGA TG

inhW[m1-i42]-b CA TATTCCCTC AAAATTAAA GTGATTGTGGTTTTG AGA TG

inhW[m1-i43]-b CA ACCTTAAAC AAAATTAAA GGTGTTGTTATGATG AGA TG

inhW[m1-i44]-b CA CCTATTTTC AAAATTAAA GTGAATGAATTTGTG AGA TG

inhW[m1-i45]-b CA AACCAAATC AAAATTAAA AGTTATGGGATAATG AGA TG

inhW[m1-i46]-b CA AATCTACCC AAAATTAAA ATGAGTGAGATATTG AGA TG

inhW[m1-i47]-b CA TACCCAAAC AAAATTAAA TGAAATGGATTGGTG AGA TG

inhW[m1-i48]-b CA CCTTCAATC AAAATTAAA GGGAATGTTAAAATG AGA TG

inhW[m1-i49]-b CA TTAATTCCC AAAATTAAA TGTGTTGAGGAGGTG AGA TG

inhW[m1-i50]-b CA ACAAAACTC AAAATTAAA GTTGGTGTAAGAATG AGA TG

inhW[m1-i51]-b CA ATTAATCCC AAAATTAAA GTTAATGGGAATGTG AGA TG
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Name Sequence

inhW[m1-i52]-b CA CCAACTCAC AAAATTAAA TAGTTTGGATGGTTG AGA TG

inhW[m1-i53]-b CA TAAACACTC AAAATTAAA GTAAATGGTTGTTTG AGA TG

inhW[m1-i54]-b CA CCCTCCTTC AAAATTAAA GGTATTGGAGGATTG AGA TG

inhW[m1-i55]-b CA CTATATACC AAAATTAAA ATAGGTGGTGTGATG AGA TG

inhW[m1-i56]-b CA CTACAATTC AAAATTAAA AGTGATGTTTGGTTG AGA TG

inhW[m1-i57]-b CA CATATTCAC AAAATTAAA AGATTTGAGGTTATG AGA TG

inhW[m1-i58]-b CA AAACTTTCC AAAATTAAA TGATGTGGAATATTG AGA TG

inhW[m1-i59]-b CA CTCTTCACC AAAATTAAA GTTATTGGTATAGTG AGA TG

inhW[m1-i60]-b CA ATATTACCC AAAATTAAA TAGATTGGGATTTTG AGA TG

inhW[m1-i61]-b CA CATTACACC AAAATTAAA ATGTATGGTTTAGTG AGA TG

inhW[m1-i62]-b CA ACTTTTACC AAAATTAAA GGATTTGGGTTGTTG AGA TG

inhW[m1-i63]-b CA ACCATATTC AAAATTAAA TAGGGTGTTTTATTG AGA TG

inhW[m1-i64]-b CA CCTCCCAAC AAAATTAAA TGTTTTGGTGATTTG AGA TG

inhW[m1-i65]-b CA TCCACTACC AAAATTAAA GTGTTTGATAAGATG AGA TG

inhW[m1-i66]-b CA TCCCTTATC AAAATTAAA GAGGATGGTGGTATG AGA TG

inhW[m1-i67]-b CA TTTCCATTC AAAATTAAA TGAGGTGAGTTTGTG AGA TG

inhW[m1-i68]-b CA ACACACTTC AAAATTAAA AAAATTGGTGGGTTG AGA TG

inhW[m1-i69]-b CA CCACTAATC AAAATTAAA TAATATGGGTGAATG AGA TG

inhW[m1-i70]-b CA AATTCACAC AAAATTAAA GTTTATGATTGGGTG AGA TG

inhW[m1-i71]-b CA TTATTCCTC AAAATTAAA ATGGTTGTTGGTGTG AGA TG

inhW[m1-i72]-b CA ACTCTCTAC AAAATTAAA ATAAGTGTTAGAGTG AGA TG

inhW[m1-i73]-b CA TTCAAACAC AAAATTAAA GTAGGTGAATTGTTG AGA TG

inhW[m1-i74]-b CA CTCATTATC AAAATTAAA GGGAGTGGTAGGGTG AGA TG

inhW[m1-i75]-b CA TAACACCAC AAAATTAAA ATAATTGGAAGTGTG AGA TG

inhW[m1-i76]-b CA ACATCTATC AAAATTAAA GGTGATGATATTGTG AGA TG

inhW[m1-i77]-b CA CAACATATC AAAATTAAA AATGATGAGAGTTTG AGA TG

inhW[m1-i78]-b CA AACTCTTAC AAAATTAAA GGTGGTGTGAAATTG AGA TG

inhW[m1-i79]-b CA ATCCATCAC AAAATTAAA ATGAATGGTAAGTTG AGA TG

inhW[m1-i80]-b CA CTTCTTAAC AAAATTAAA ATAGTTGTATGGATG AGA TG

inhW[m1-i81]-b CA ATAACCATC AAAATTAAA GAATGTGTAGAGTTG AGA TG

inhW[m1-i82]-b CA CACTATTTC AAAATTAAA GAAAATGAGGATTTG AGA TG

inhW[m1-i83]-b CA ATACTTCTC AAAATTAAA ATGTTTGTAATGGTG AGA TG

inhW[m1-i84]-b CA TCACCCTAC AAAATTAAA GGAGTTGAATATATG AGA TG

inhW[m1-i85]-b CA TACACCCAC AAAATTAAA TGTAATGAGTGATTG AGA TG

inhW[m1-i86]-b CA CCAATCTCC AAAATTAAA TATTTTGTGTTGGTG AGA TG

inhW[m1-i87]-b CA CACAATAAC AAAATTAAA ATATATGTGGGTTTG AGA TG

inhW[m1-i88]-b CA CAAAATTCC AAAATTAAA ATTTATGGAGAGATG AGA TG

inhW[m1-i89]-b CA AATACTCCC AAAATTAAA TGAGATGTTGATATG AGA TG

inhW[m1-i90]-b CA TCTAACCTC AAAATTAAA TGTAGTGTGGATGTG AGA TG

inhW[m1-i91]-b CA TCACTCACC AAAATTAAA TGTTGTGGTTTGATG AGA TG

inhW[m1-i92]-b CA TTCTCAACC AAAATTAAA GTGTGTGAAAGTTTG AGA TG

inhW[m1-i93]-b CA CTTACATAC AAAATTAAA ATAGATGGGTAGGTG AGA TG

inhW[m1-i94]-b CA ATCTACTAC AAAATTAAA GGAATTGTAAAGGTG AGA TG

inhW[m1-i95]-b CA CTAAACATC AAAATTAAA ATATGTGAAGGAATG AGA TG

inhW[m1-i96]-b CA ACTTAATCC AAAATTAAA AATGGTGGAGTTGTG AGA TG

inhW[m1-i97]-b CA TTTTCTCAC AAAATTAAA ATTGATGGAGTATTG AGA TG

inhW[m1-i98]-b CA TCTTTACTC AAAATTAAA AATGTTGGATAAGTG AGA TG

inhW[m1-i99]-b CA TTTATCCAC AAAATTAAA AAGGGTGATTATGTG AGA TG

inhW[m1-i100]-b CA TCCTAAATC AAAATTAAA GTTAGTGAGGGTATG AGA TG
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Table S8: DNA sequences of top strands in the weight gates for memory 2.

Name Sequence

inhW[m2-i1]-t CACACAACAACCACA TCT CAACTTCCCACACTT AA TTTAATTTT GGAGGATAA AATAGAG

inhW[m2-i2]-t CACACAACAACCACA TCT CATCTAACCAACTTA AA TTTAATTTT GAATTTGGA AATAGAG

inhW[m2-i3]-t CACACAACAACCACA TCT CACCTAAACAATACT AA TTTAATTTT GGATGGTGT AATAGAG

inhW[m2-i4]-t CACACAACAACCACA TCT CATTACATCACAATC AA TTTAATTTT GGAGTGGAG AATAGAG

inhW[m2-i5]-t CACACAACAACCACA TCT CAACCTTACATTATC AA TTTAATTTT GTAATAAGG AATAGAG

inhW[m2-i6]-t CACACAACAACCACA TCT CAATCCATCATCTTA AA TTTAATTTT GTTTTGAGG AATAGAG

inhW[m2-i7]-t CACACAACAACCACA TCT CATCACTACATCCAC AA TTTAATTTT GAGAGAGAT AATAGAG

inhW[m2-i8]-t CACACAACAACCACA TCT CATCCCAACATACCT AA TTTAATTTT GAAGAAATG AATAGAG

inhW[m2-i9]-t CACACAACAACCACA TCT CAATCTCCCAACCCA AA TTTAATTTT GGTAGGGTT AATAGAG

inhW[m2-i10]-t CACACAACAACCACA TCT CATTTCCACAACTTT AA TTTAATTTT GAGATATGA AATAGAG

inhW[m2-i11]-t CACACAACAACCACA TCT CATCTTTTCACCACT AA TTTAATTTT GTATGATTG AATAGAG

inhW[m2-i12]-t CACACAACAACCACA TCT CAATTACTCAAACTC AA TTTAATTTT GGGAAATGG AATAGAG

inhW[m2-i13]-t CACACAACAACCACA TCT CACTATCACAACCTC AA TTTAATTTT GGTTATGTT AATAGAG

inhW[m2-i14]-t CACACAACAACCACA TCT CACAACAACACACCC AA TTTAATTTT GTGTTAAAG AATAGAG

inhW[m2-i15]-t CACACAACAACCACA TCT CAATCATACATATCC AA TTTAATTTT GTATAGGTG AATAGAG

inhW[m2-i16]-t CACACAACAACCACA TCT CACCCTTTCATACTA AA TTTAATTTT GTTGATGGG AATAGAG

inhW[m2-i17]-t CACACAACAACCACA TCT CATCCACTCAATCCC AA TTTAATTTT GATGAGAAT AATAGAG

inhW[m2-i18]-t CACACAACAACCACA TCT CATACTCACATAATC AA TTTAATTTT GGGTTATTA AATAGAG

inhW[m2-i19]-t CACACAACAACCACA TCT CATACACCCACTTCT AA TTTAATTTT GGATAAGTA AATAGAG

inhW[m2-i20]-t CACACAACAACCACA TCT CACCTTCTCATATCT AA TTTAATTTT GAGTTGAAT AATAGAG

inhW[m2-i21]-t CACACAACAACCACA TCT CATTATTTCAACCCT AA TTTAATTTT GGAAGTGAG AATAGAG

inhW[m2-i22]-t CACACAACAACCACA TCT CATTAATACACTTCC AA TTTAATTTT GATGTGATA AATAGAG

inhW[m2-i23]-t CACACAACAACCACA TCT CATTTACACACACAT AA TTTAATTTT GGAATGAGA AATAGAG

inhW[m2-i24]-t CACACAACAACCACA TCT CATAATTCCATCTTC AA TTTAATTTT GTTTGTGAT AATAGAG

inhW[m2-i25]-t CACACAACAACCACA TCT CAACACTTCACTCCT AA TTTAATTTT GTTGGAAAT AATAGAG

inhW[m2-i26]-t CACACAACAACCACA TCT CATCTATCCACTATC AA TTTAATTTT GGTTTTATG AATAGAG

inhW[m2-i27]-t CACACAACAACCACA TCT CACTCCTACAAATTA AA TTTAATTTT GAAAGGGAA AATAGAG

inhW[m2-i28]-t CACACAACAACCACA TCT CACTACCTCATACCC AA TTTAATTTT GTGTATAGT AATAGAG

inhW[m2-i29]-t CACACAACAACCACA TCT CATACCTACACTCTA AA TTTAATTTT GTAAAAGGA AATAGAG

inhW[m2-i30]-t CACACAACAACCACA TCT CACTCACACACCTTC AA TTTAATTTT GGTGGTATA AATAGAG

inhW[m2-i31]-t CACACAACAACCACA TCT CAACTACACATTCTA AA TTTAATTTT GTTAGGTAA AATAGAG

inhW[m2-i32]-t CACACAACAACCACA TCT CATATTCACAAACCA AA TTTAATTTT GGATATTGA AATAGAG

inhW[m2-i33]-t CACACAACAACCACA TCT CACACATTCAAAACT AA TTTAATTTT GTGGAGGAG AATAGAG

inhW[m2-i34]-t CACACAACAACCACA TCT CACTTTTCCACTTTA AA TTTAATTTT GTTGTGGGT AATAGAG

inhW[m2-i35]-t CACACAACAACCACA TCT CAAATACCCACCCAC AA TTTAATTTT GAAGTTGTT AATAGAG

inhW[m2-i36]-t CACACAACAACCACA TCT CACCACATCATTATT AA TTTAATTTT GAGGTATTT AATAGAG

inhW[m2-i37]-t CACACAACAACCACA TCT CATCCCTTCAATATA AA TTTAATTTT GTATTGGGA AATAGAG

inhW[m2-i38]-t CACACAACAACCACA TCT CAATTCATCAACAAC AA TTTAATTTT GAGAGGATG AATAGAG

inhW[m2-i39]-t CACACAACAACCACA TCT CATAAACACATCCCT AA TTTAATTTT GTAAGTAGA AATAGAG

inhW[m2-i40]-t CACACAACAACCACA TCT CACATATACACAAAC AA TTTAATTTT GTAGGTTTT AATAGAG

inhW[m2-i41]-t CACACAACAACCACA TCT CATCCTATCACTTTC AA TTTAATTTT GGGTGGTTG AATAGAG

inhW[m2-i42]-t CACACAACAACCACA TCT CAAAACCACAATCAC AA TTTAATTTT GAGGGAATA AATAGAG

inhW[m2-i43]-t CACACAACAACCACA TCT CATCATAACAACACC AA TTTAATTTT GTTTAAGGT AATAGAG

inhW[m2-i44]-t CACACAACAACCACA TCT CACAAATTCATTCAC AA TTTAATTTT GAAAATAGG AATAGAG

inhW[m2-i45]-t CACACAACAACCACA TCT CATTATCCCATAACT AA TTTAATTTT GATTTGGTT AATAGAG

inhW[m2-i46]-t CACACAACAACCACA TCT CAATATCTCACTCAT AA TTTAATTTT GGGTAGATT AATAGAG

inhW[m2-i47]-t CACACAACAACCACA TCT CACCAATCCATTTCA AA TTTAATTTT GTTTGGGTA AATAGAG

inhW[m2-i48]-t CACACAACAACCACA TCT CATTTTAACATTCCC AA TTTAATTTT GATTGAAGG AATAGAG

inhW[m2-i49]-t CACACAACAACCACA TCT CACCTCCTCAACACA AA TTTAATTTT GGGAATTAA AATAGAG

inhW[m2-i50]-t CACACAACAACCACA TCT CATTCTTACACCAAC AA TTTAATTTT GAGTTTTGT AATAGAG

inhW[m2-i51]-t CACACAACAACCACA TCT CACATTCCCATTAAC AA TTTAATTTT GGGATTAAT AATAGAG
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Name Sequence

inhW[m2-i52]-t CACACAACAACCACA TCT CAACCATCCAAACTA AA TTTAATTTT GTGAGTTGG AATAGAG

inhW[m2-i53]-t CACACAACAACCACA TCT CAAACAACCATTTAC AA TTTAATTTT GAGTGTTTA AATAGAG

inhW[m2-i54]-t CACACAACAACCACA TCT CAATCCTCCAATACC AA TTTAATTTT GAAGGAGGG AATAGAG

inhW[m2-i55]-t CACACAACAACCACA TCT CATCACACCACCTAT AA TTTAATTTT GGTATATAG AATAGAG

inhW[m2-i56]-t CACACAACAACCACA TCT CAACCAAACATCACT AA TTTAATTTT GAATTGTAG AATAGAG

inhW[m2-i57]-t CACACAACAACCACA TCT CATAACCTCAAATCT AA TTTAATTTT GTGAATATG AATAGAG

inhW[m2-i58]-t CACACAACAACCACA TCT CAATATTCCACATCA AA TTTAATTTT GGAAAGTTT AATAGAG

inhW[m2-i59]-t CACACAACAACCACA TCT CACTATACCAATAAC AA TTTAATTTT GGTGAAGAG AATAGAG

inhW[m2-i60]-t CACACAACAACCACA TCT CAAAATCCCAATCTA AA TTTAATTTT GGGTAATAT AATAGAG

inhW[m2-i61]-t CACACAACAACCACA TCT CACTAAACCATACAT AA TTTAATTTT GGTGTAATG AATAGAG

inhW[m2-i62]-t CACACAACAACCACA TCT CAACAACCCAAATCC AA TTTAATTTT GGTAAAAGT AATAGAG

inhW[m2-i63]-t CACACAACAACCACA TCT CAATAAAACACCCTA AA TTTAATTTT GAATATGGT AATAGAG

inhW[m2-i64]-t CACACAACAACCACA TCT CAAATCACCAAAACA AA TTTAATTTT GTTGGGAGG AATAGAG

inhW[m2-i65]-t CACACAACAACCACA TCT CATCTTATCAAACAC AA TTTAATTTT GGTAGTGGA AATAGAG

inhW[m2-i66]-t CACACAACAACCACA TCT CATACCACCATCCTC AA TTTAATTTT GATAAGGGA AATAGAG

inhW[m2-i67]-t CACACAACAACCACA TCT CACAAACTCACCTCA AA TTTAATTTT GAATGGAAA AATAGAG

inhW[m2-i68]-t CACACAACAACCACA TCT CAACCCACCAATTTT AA TTTAATTTT GAAGTGTGT AATAGAG

inhW[m2-i69]-t CACACAACAACCACA TCT CATTCACCCATATTA AA TTTAATTTT GATTAGTGG AATAGAG

inhW[m2-i70]-t CACACAACAACCACA TCT CACCCAATCATAAAC AA TTTAATTTT GTGTGAATT AATAGAG

inhW[m2-i71]-t CACACAACAACCACA TCT CACACCAACAACCAT AA TTTAATTTT GAGGAATAA AATAGAG

inhW[m2-i72]-t CACACAACAACCACA TCT CACTCTAACACTTAT AA TTTAATTTT GTAGAGAGT AATAGAG

inhW[m2-i73]-t CACACAACAACCACA TCT CAACAATTCACCTAC AA TTTAATTTT GTGTTTGAA AATAGAG

inhW[m2-i74]-t CACACAACAACCACA TCT CACCCTACCACTCCC AA TTTAATTTT GATAATGAG AATAGAG

inhW[m2-i75]-t CACACAACAACCACA TCT CACACTTCCAATTAT AA TTTAATTTT GTGGTGTTA AATAGAG

inhW[m2-i76]-t CACACAACAACCACA TCT CACAATATCATCACC AA TTTAATTTT GATAGATGT AATAGAG

inhW[m2-i77]-t CACACAACAACCACA TCT CAAACTCTCATCATT AA TTTAATTTT GATATGTTG AATAGAG

inhW[m2-i78]-t CACACAACAACCACA TCT CAATTTCACACCACC AA TTTAATTTT GTAAGAGTT AATAGAG

inhW[m2-i79]-t CACACAACAACCACA TCT CAACTTACCATTCAT AA TTTAATTTT GTGATGGAT AATAGAG

inhW[m2-i80]-t CACACAACAACCACA TCT CATCCATACAACTAT AA TTTAATTTT GTTAAGAAG AATAGAG

inhW[m2-i81]-t CACACAACAACCACA TCT CAACTCTACACATTC AA TTTAATTTT GATGGTTAT AATAGAG

inhW[m2-i82]-t CACACAACAACCACA TCT CAAATCCTCATTTTC AA TTTAATTTT GAAATAGTG AATAGAG

inhW[m2-i83]-t CACACAACAACCACA TCT CACCATTACAAACAT AA TTTAATTTT GAGAAGTAT AATAGAG

inhW[m2-i84]-t CACACAACAACCACA TCT CATATATTCAACTCC AA TTTAATTTT GTAGGGTGA AATAGAG

inhW[m2-i85]-t CACACAACAACCACA TCT CAATCACTCATTACA AA TTTAATTTT GTGGGTGTA AATAGAG

inhW[m2-i86]-t CACACAACAACCACA TCT CACCAACACAAAATA AA TTTAATTTT GGAGATTGG AATAGAG

inhW[m2-i87]-t CACACAACAACCACA TCT CAAACCCACATATAT AA TTTAATTTT GTTATTGTG AATAGAG

inhW[m2-i88]-t CACACAACAACCACA TCT CATCTCTCCATAAAT AA TTTAATTTT GGAATTTTG AATAGAG

inhW[m2-i89]-t CACACAACAACCACA TCT CATATCAACATCTCA AA TTTAATTTT GGGAGTATT AATAGAG

inhW[m2-i90]-t CACACAACAACCACA TCT CACATCCACACTACA AA TTTAATTTT GAGGTTAGA AATAGAG

inhW[m2-i91]-t CACACAACAACCACA TCT CATCAAACCACAACA AA TTTAATTTT GGTGAGTGA AATAGAG

inhW[m2-i92]-t CACACAACAACCACA TCT CAAACTTTCACACAC AA TTTAATTTT GGTTGAGAA AATAGAG

inhW[m2-i93]-t CACACAACAACCACA TCT CACCTACCCATCTAT AA TTTAATTTT GTATGTAAG AATAGAG

inhW[m2-i94]-t CACACAACAACCACA TCT CACCTTTACAATTCC AA TTTAATTTT GTAGTAGAT AATAGAG

inhW[m2-i95]-t CACACAACAACCACA TCT CATTCCTTCACATAT AA TTTAATTTT GATGTTTAG AATAGAG

inhW[m2-i96]-t CACACAACAACCACA TCT CACAACTCCACCATT AA TTTAATTTT GGATTAAGT AATAGAG

inhW[m2-i97]-t CACACAACAACCACA TCT CAATACTCCATCAAT AA TTTAATTTT GTGAGAAAA AATAGAG

inhW[m2-i98]-t CACACAACAACCACA TCT CACTTATCCAACATT AA TTTAATTTT GAGTAAAGA AATAGAG

inhW[m2-i99]-t CACACAACAACCACA TCT CACATAATCACCCTT AA TTTAATTTT GTGGATAAA AATAGAG

inhW[m2-i100]-t CACACAACAACCACA TCT CATACCCTCACTAAC AA TTTAATTTT GATTTAGGA AATAGAG
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Table S9: DNA sequences of bottom strands in the weight gates for memory 2.

Name Sequence

inhW[m2-i1]-b TT TTATCCTCC AAAATTAAA AAGTGTGGGAAGTTG AGA TG

inhW[m2-i2]-b TT TCCAAATTC AAAATTAAA TAAGTTGGTTAGATG AGA TG

inhW[m2-i3]-b TT ACACCATCC AAAATTAAA AGTATTGTTTAGGTG AGA TG

inhW[m2-i4]-b TT CTCCACTCC AAAATTAAA GATTGTGATGTAATG AGA TG

inhW[m2-i5]-b TT CCTTATTAC AAAATTAAA GATAATGTAAGGTTG AGA TG

inhW[m2-i6]-b TT CCTCAAAAC AAAATTAAA TAAGATGATGGATTG AGA TG

inhW[m2-i7]-b TT ATCTCTCTC AAAATTAAA GTGGATGTAGTGATG AGA TG

inhW[m2-i8]-b TT CATTTCTTC AAAATTAAA AGGTATGTTGGGATG AGA TG

inhW[m2-i9]-b TT AACCCTACC AAAATTAAA TGGGTTGGGAGATTG AGA TG

inhW[m2-i10]-b TT TCATATCTC AAAATTAAA AAAGTTGTGGAAATG AGA TG

inhW[m2-i11]-b TT CAATCATAC AAAATTAAA AGTGGTGAAAAGATG AGA TG

inhW[m2-i12]-b TT CCATTTCCC AAAATTAAA GAGTTTGAGTAATTG AGA TG

inhW[m2-i13]-b TT AACATAACC AAAATTAAA GAGGTTGTGATAGTG AGA TG

inhW[m2-i14]-b TT CTTTAACAC AAAATTAAA GGGTGTGTTGTTGTG AGA TG

inhW[m2-i15]-b TT CACCTATAC AAAATTAAA GGATATGTATGATTG AGA TG

inhW[m2-i16]-b TT CCCATCAAC AAAATTAAA TAGTATGAAAGGGTG AGA TG

inhW[m2-i17]-b TT ATTCTCATC AAAATTAAA GGGATTGAGTGGATG AGA TG

inhW[m2-i18]-b TT TAATAACCC AAAATTAAA GATTATGTGAGTATG AGA TG

inhW[m2-i19]-b TT TACTTATCC AAAATTAAA AGAAGTGGGTGTATG AGA TG

inhW[m2-i20]-b TT ATTCAACTC AAAATTAAA AGATATGAGAAGGTG AGA TG

inhW[m2-i21]-b TT CTCACTTCC AAAATTAAA AGGGTTGAAATAATG AGA TG

inhW[m2-i22]-b TT TATCACATC AAAATTAAA GGAAGTGTATTAATG AGA TG

inhW[m2-i23]-b TT TCTCATTCC AAAATTAAA ATGTGTGTGTAAATG AGA TG

inhW[m2-i24]-b TT ATCACAAAC AAAATTAAA GAAGATGGAATTATG AGA TG

inhW[m2-i25]-b TT ATTTCCAAC AAAATTAAA AGGAGTGAAGTGTTG AGA TG

inhW[m2-i26]-b TT CATAAAACC AAAATTAAA GATAGTGGATAGATG AGA TG

inhW[m2-i27]-b TT TTCCCTTTC AAAATTAAA TAATTTGTAGGAGTG AGA TG

inhW[m2-i28]-b TT ACTATACAC AAAATTAAA GGGTATGAGGTAGTG AGA TG

inhW[m2-i29]-b TT TCCTTTTAC AAAATTAAA TAGAGTGTAGGTATG AGA TG

inhW[m2-i30]-b TT TATACCACC AAAATTAAA GAAGGTGTGTGAGTG AGA TG

inhW[m2-i31]-b TT TTACCTAAC AAAATTAAA TAGAATGTGTAGTTG AGA TG

inhW[m2-i32]-b TT TCAATATCC AAAATTAAA TGGTTTGTGAATATG AGA TG

inhW[m2-i33]-b TT CTCCTCCAC AAAATTAAA AGTTTTGAATGTGTG AGA TG

inhW[m2-i34]-b TT ACCCACAAC AAAATTAAA TAAAGTGGAAAAGTG AGA TG

inhW[m2-i35]-b TT AACAACTTC AAAATTAAA GTGGGTGGGTATTTG AGA TG

inhW[m2-i36]-b TT AAATACCTC AAAATTAAA AATAATGATGTGGTG AGA TG

inhW[m2-i37]-b TT TCCCAATAC AAAATTAAA TATATTGAAGGGATG AGA TG

inhW[m2-i38]-b TT CATCCTCTC AAAATTAAA GTTGTTGATGAATTG AGA TG

inhW[m2-i39]-b TT TCTACTTAC AAAATTAAA AGGGATGTGTTTATG AGA TG

inhW[m2-i40]-b TT AAAACCTAC AAAATTAAA GTTTGTGTATATGTG AGA TG

inhW[m2-i41]-b TT CAACCACCC AAAATTAAA GAAAGTGATAGGATG AGA TG

inhW[m2-i42]-b TT TATTCCCTC AAAATTAAA GTGATTGTGGTTTTG AGA TG

inhW[m2-i43]-b TT ACCTTAAAC AAAATTAAA GGTGTTGTTATGATG AGA TG

inhW[m2-i44]-b TT CCTATTTTC AAAATTAAA GTGAATGAATTTGTG AGA TG

inhW[m2-i45]-b TT AACCAAATC AAAATTAAA AGTTATGGGATAATG AGA TG

inhW[m2-i46]-b TT AATCTACCC AAAATTAAA ATGAGTGAGATATTG AGA TG

inhW[m2-i47]-b TT TACCCAAAC AAAATTAAA TGAAATGGATTGGTG AGA TG

inhW[m2-i48]-b TT CCTTCAATC AAAATTAAA GGGAATGTTAAAATG AGA TG

inhW[m2-i49]-b TT TTAATTCCC AAAATTAAA TGTGTTGAGGAGGTG AGA TG

inhW[m2-i50]-b TT ACAAAACTC AAAATTAAA GTTGGTGTAAGAATG AGA TG

inhW[m2-i51]-b TT ATTAATCCC AAAATTAAA GTTAATGGGAATGTG AGA TG
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Name Sequence

inhW[m2-i52]-b TT CCAACTCAC AAAATTAAA TAGTTTGGATGGTTG AGA TG

inhW[m2-i53]-b TT TAAACACTC AAAATTAAA GTAAATGGTTGTTTG AGA TG

inhW[m2-i54]-b TT CCCTCCTTC AAAATTAAA GGTATTGGAGGATTG AGA TG

inhW[m2-i55]-b TT CTATATACC AAAATTAAA ATAGGTGGTGTGATG AGA TG

inhW[m2-i56]-b TT CTACAATTC AAAATTAAA AGTGATGTTTGGTTG AGA TG

inhW[m2-i57]-b TT CATATTCAC AAAATTAAA AGATTTGAGGTTATG AGA TG

inhW[m2-i58]-b TT AAACTTTCC AAAATTAAA TGATGTGGAATATTG AGA TG

inhW[m2-i59]-b TT CTCTTCACC AAAATTAAA GTTATTGGTATAGTG AGA TG

inhW[m2-i60]-b TT ATATTACCC AAAATTAAA TAGATTGGGATTTTG AGA TG

inhW[m2-i61]-b TT CATTACACC AAAATTAAA ATGTATGGTTTAGTG AGA TG

inhW[m2-i62]-b TT ACTTTTACC AAAATTAAA GGATTTGGGTTGTTG AGA TG

inhW[m2-i63]-b TT ACCATATTC AAAATTAAA TAGGGTGTTTTATTG AGA TG

inhW[m2-i64]-b TT CCTCCCAAC AAAATTAAA TGTTTTGGTGATTTG AGA TG

inhW[m2-i65]-b TT TCCACTACC AAAATTAAA GTGTTTGATAAGATG AGA TG

inhW[m2-i66]-b TT TCCCTTATC AAAATTAAA GAGGATGGTGGTATG AGA TG

inhW[m2-i67]-b TT TTTCCATTC AAAATTAAA TGAGGTGAGTTTGTG AGA TG

inhW[m2-i68]-b TT ACACACTTC AAAATTAAA AAAATTGGTGGGTTG AGA TG

inhW[m2-i69]-b TT CCACTAATC AAAATTAAA TAATATGGGTGAATG AGA TG

inhW[m2-i70]-b TT AATTCACAC AAAATTAAA GTTTATGATTGGGTG AGA TG

inhW[m2-i71]-b TT TTATTCCTC AAAATTAAA ATGGTTGTTGGTGTG AGA TG

inhW[m2-i72]-b TT ACTCTCTAC AAAATTAAA ATAAGTGTTAGAGTG AGA TG

inhW[m2-i73]-b TT TTCAAACAC AAAATTAAA GTAGGTGAATTGTTG AGA TG

inhW[m2-i74]-b TT CTCATTATC AAAATTAAA GGGAGTGGTAGGGTG AGA TG

inhW[m2-i75]-b TT TAACACCAC AAAATTAAA ATAATTGGAAGTGTG AGA TG

inhW[m2-i76]-b TT ACATCTATC AAAATTAAA GGTGATGATATTGTG AGA TG

inhW[m2-i77]-b TT CAACATATC AAAATTAAA AATGATGAGAGTTTG AGA TG

inhW[m2-i78]-b TT AACTCTTAC AAAATTAAA GGTGGTGTGAAATTG AGA TG

inhW[m2-i79]-b TT ATCCATCAC AAAATTAAA ATGAATGGTAAGTTG AGA TG

inhW[m2-i80]-b TT CTTCTTAAC AAAATTAAA ATAGTTGTATGGATG AGA TG

inhW[m2-i81]-b TT ATAACCATC AAAATTAAA GAATGTGTAGAGTTG AGA TG

inhW[m2-i82]-b TT CACTATTTC AAAATTAAA GAAAATGAGGATTTG AGA TG

inhW[m2-i83]-b TT ATACTTCTC AAAATTAAA ATGTTTGTAATGGTG AGA TG

inhW[m2-i84]-b TT TCACCCTAC AAAATTAAA GGAGTTGAATATATG AGA TG

inhW[m2-i85]-b TT TACACCCAC AAAATTAAA TGTAATGAGTGATTG AGA TG

inhW[m2-i86]-b TT CCAATCTCC AAAATTAAA TATTTTGTGTTGGTG AGA TG

inhW[m2-i87]-b TT CACAATAAC AAAATTAAA ATATATGTGGGTTTG AGA TG

inhW[m2-i88]-b TT CAAAATTCC AAAATTAAA ATTTATGGAGAGATG AGA TG

inhW[m2-i89]-b TT AATACTCCC AAAATTAAA TGAGATGTTGATATG AGA TG

inhW[m2-i90]-b TT TCTAACCTC AAAATTAAA TGTAGTGTGGATGTG AGA TG

inhW[m2-i91]-b TT TCACTCACC AAAATTAAA TGTTGTGGTTTGATG AGA TG

inhW[m2-i92]-b TT TTCTCAACC AAAATTAAA GTGTGTGAAAGTTTG AGA TG

inhW[m2-i93]-b TT CTTACATAC AAAATTAAA ATAGATGGGTAGGTG AGA TG

inhW[m2-i94]-b TT ATCTACTAC AAAATTAAA GGAATTGTAAAGGTG AGA TG

inhW[m2-i95]-b TT CTAAACATC AAAATTAAA ATATGTGAAGGAATG AGA TG

inhW[m2-i96]-b TT ACTTAATCC AAAATTAAA AATGGTGGAGTTGTG AGA TG

inhW[m2-i97]-b TT TTTTCTCAC AAAATTAAA ATTGATGGAGTATTG AGA TG

inhW[m2-i98]-b TT TCTTTACTC AAAATTAAA AATGTTGGATAAGTG AGA TG

inhW[m2-i99]-b TT TTTATCCAC AAAATTAAA AAGGGTGATTATGTG AGA TG

inhW[m2-i100]-b TT TCCTAAATC AAAATTAAA GTTAGTGAGGGTATG AGA TG
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Table S10: DNA sequences of top strands in the weight gates for reading out the learned weights
in memory 1.

Name Sequence

inhW[m1-i1]-Y1 CATAACACAATCACA TCT CAACTTCCCACACTT AA TTTAATTTT GGAGGATAA TGAAAGA

inhW[m1-i2]-Y1 CATAACACAATCACA TCT CATCTAACCAACTTA AA TTTAATTTT GAATTTGGA TGAAAGA

inhW[m1-i3]-Y1 CATAACACAATCACA TCT CACCTAAACAATACT AA TTTAATTTT GGATGGTGT TGAAAGA

inhW[m1-i4]-Y1 CATAACACAATCACA TCT CATTACATCACAATC AA TTTAATTTT GGAGTGGAG TGAAAGA

inhW[m1-i5]-Y1 CATAACACAATCACA TCT CAACCTTACATTATC AA TTTAATTTT GTAATAAGG TGAAAGA

inhW[m1-i6]-Y1 CATAACACAATCACA TCT CAATCCATCATCTTA AA TTTAATTTT GTTTTGAGG TGAAAGA

inhW[m1-i7]-Y1 CATAACACAATCACA TCT CATCACTACATCCAC AA TTTAATTTT GAGAGAGAT TGAAAGA

inhW[m1-i8]-Y1 CATAACACAATCACA TCT CATCCCAACATACCT AA TTTAATTTT GAAGAAATG TGAAAGA

inhW[m1-i9]-Y1 CATAACACAATCACA TCT CAATCTCCCAACCCA AA TTTAATTTT GGTAGGGTT TGAAAGA

inhW[m1-i10]-Y1 CATAACACAATCACA TCT CATTTCCACAACTTT AA TTTAATTTT GAGATATGA TGAAAGA

inhW[m1-i11]-Y1 CATAACACAATCACA TCT CATCTTTTCACCACT AA TTTAATTTT GTATGATTG TGAAAGA

inhW[m1-i12]-Y1 CATAACACAATCACA TCT CAATTACTCAAACTC AA TTTAATTTT GGGAAATGG TGAAAGA

inhW[m1-i13]-Y1 CATAACACAATCACA TCT CACTATCACAACCTC AA TTTAATTTT GGTTATGTT TGAAAGA

inhW[m1-i14]-Y1 CATAACACAATCACA TCT CACAACAACACACCC AA TTTAATTTT GTGTTAAAG TGAAAGA

inhW[m1-i15]-Y1 CATAACACAATCACA TCT CAATCATACATATCC AA TTTAATTTT GTATAGGTG TGAAAGA

inhW[m1-i16]-Y1 CATAACACAATCACA TCT CACCCTTTCATACTA AA TTTAATTTT GTTGATGGG TGAAAGA

inhW[m1-i17]-Y1 CATAACACAATCACA TCT CATCCACTCAATCCC AA TTTAATTTT GATGAGAAT TGAAAGA

inhW[m1-i18]-Y1 CATAACACAATCACA TCT CATACTCACATAATC AA TTTAATTTT GGGTTATTA TGAAAGA

inhW[m1-i19]-Y1 CATAACACAATCACA TCT CATACACCCACTTCT AA TTTAATTTT GGATAAGTA TGAAAGA

inhW[m1-i20]-Y1 CATAACACAATCACA TCT CACCTTCTCATATCT AA TTTAATTTT GAGTTGAAT TGAAAGA

inhW[m1-i21]-Y1 CATAACACAATCACA TCT CATTATTTCAACCCT AA TTTAATTTT GGAAGTGAG TGAAAGA

inhW[m1-i22]-Y1 CATAACACAATCACA TCT CATTAATACACTTCC AA TTTAATTTT GATGTGATA TGAAAGA

inhW[m1-i23]-Y1 CATAACACAATCACA TCT CATTTACACACACAT AA TTTAATTTT GGAATGAGA TGAAAGA

inhW[m1-i24]-Y1 CATAACACAATCACA TCT CATAATTCCATCTTC AA TTTAATTTT GTTTGTGAT TGAAAGA

inhW[m1-i25]-Y1 CATAACACAATCACA TCT CAACACTTCACTCCT AA TTTAATTTT GTTGGAAAT TGAAAGA

inhW[m1-i26]-Y1 CATAACACAATCACA TCT CATCTATCCACTATC AA TTTAATTTT GGTTTTATG TGAAAGA

inhW[m1-i27]-Y1 CATAACACAATCACA TCT CACTCCTACAAATTA AA TTTAATTTT GAAAGGGAA TGAAAGA

inhW[m1-i28]-Y1 CATAACACAATCACA TCT CACTACCTCATACCC AA TTTAATTTT GTGTATAGT TGAAAGA

inhW[m1-i29]-Y1 CATAACACAATCACA TCT CATACCTACACTCTA AA TTTAATTTT GTAAAAGGA TGAAAGA

inhW[m1-i30]-Y1 CATAACACAATCACA TCT CACTCACACACCTTC AA TTTAATTTT GGTGGTATA TGAAAGA

inhW[m1-i31]-Y1 CATAACACAATCACA TCT CAACTACACATTCTA AA TTTAATTTT GTTAGGTAA TGAAAGA

inhW[m1-i32]-Y1 CATAACACAATCACA TCT CATATTCACAAACCA AA TTTAATTTT GGATATTGA TGAAAGA

inhW[m1-i33]-Y1 CATAACACAATCACA TCT CACACATTCAAAACT AA TTTAATTTT GTGGAGGAG TGAAAGA

inhW[m1-i34]-Y1 CATAACACAATCACA TCT CACTTTTCCACTTTA AA TTTAATTTT GTTGTGGGT TGAAAGA

inhW[m1-i35]-Y1 CATAACACAATCACA TCT CAAATACCCACCCAC AA TTTAATTTT GAAGTTGTT TGAAAGA

inhW[m1-i36]-Y1 CATAACACAATCACA TCT CACCACATCATTATT AA TTTAATTTT GAGGTATTT TGAAAGA

inhW[m1-i37]-Y1 CATAACACAATCACA TCT CATCCCTTCAATATA AA TTTAATTTT GTATTGGGA TGAAAGA

inhW[m1-i38]-Y1 CATAACACAATCACA TCT CAATTCATCAACAAC AA TTTAATTTT GAGAGGATG TGAAAGA

inhW[m1-i39]-Y1 CATAACACAATCACA TCT CATAAACACATCCCT AA TTTAATTTT GTAAGTAGA TGAAAGA

inhW[m1-i40]-Y1 CATAACACAATCACA TCT CACATATACACAAAC AA TTTAATTTT GTAGGTTTT TGAAAGA

inhW[m1-i41]-Y1 CATAACACAATCACA TCT CATCCTATCACTTTC AA TTTAATTTT GGGTGGTTG TGAAAGA

inhW[m1-i42]-Y1 CATAACACAATCACA TCT CAAAACCACAATCAC AA TTTAATTTT GAGGGAATA TGAAAGA

inhW[m1-i43]-Y1 CATAACACAATCACA TCT CATCATAACAACACC AA TTTAATTTT GTTTAAGGT TGAAAGA

inhW[m1-i44]-Y1 CATAACACAATCACA TCT CACAAATTCATTCAC AA TTTAATTTT GAAAATAGG TGAAAGA

inhW[m1-i45]-Y1 CATAACACAATCACA TCT CATTATCCCATAACT AA TTTAATTTT GATTTGGTT TGAAAGA

inhW[m1-i46]-Y1 CATAACACAATCACA TCT CAATATCTCACTCAT AA TTTAATTTT GGGTAGATT TGAAAGA

inhW[m1-i47]-Y1 CATAACACAATCACA TCT CACCAATCCATTTCA AA TTTAATTTT GTTTGGGTA TGAAAGA

inhW[m1-i48]-Y1 CATAACACAATCACA TCT CATTTTAACATTCCC AA TTTAATTTT GATTGAAGG TGAAAGA

inhW[m1-i49]-Y1 CATAACACAATCACA TCT CACCTCCTCAACACA AA TTTAATTTT GGGAATTAA TGAAAGA

inhW[m1-i50]-Y1 CATAACACAATCACA TCT CATTCTTACACCAAC AA TTTAATTTT GAGTTTTGT TGAAAGA
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Name Sequence

inhW[m1-i51]-Y1 CATAACACAATCACA TCT CACATTCCCATTAAC AA TTTAATTTT GGGATTAAT TGAAAGA

inhW[m1-i52]-Y1 CATAACACAATCACA TCT CAACCATCCAAACTA AA TTTAATTTT GTGAGTTGG TGAAAGA

inhW[m1-i53]-Y1 CATAACACAATCACA TCT CAAACAACCATTTAC AA TTTAATTTT GAGTGTTTA TGAAAGA

inhW[m1-i54]-Y1 CATAACACAATCACA TCT CAATCCTCCAATACC AA TTTAATTTT GAAGGAGGG TGAAAGA

inhW[m1-i55]-Y1 CATAACACAATCACA TCT CATCACACCACCTAT AA TTTAATTTT GGTATATAG TGAAAGA

inhW[m1-i56]-Y1 CATAACACAATCACA TCT CAACCAAACATCACT AA TTTAATTTT GAATTGTAG TGAAAGA

inhW[m1-i57]-Y1 CATAACACAATCACA TCT CATAACCTCAAATCT AA TTTAATTTT GTGAATATG TGAAAGA

inhW[m1-i58]-Y1 CATAACACAATCACA TCT CAATATTCCACATCA AA TTTAATTTT GGAAAGTTT TGAAAGA

inhW[m1-i59]-Y1 CATAACACAATCACA TCT CACTATACCAATAAC AA TTTAATTTT GGTGAAGAG TGAAAGA

inhW[m1-i60]-Y1 CATAACACAATCACA TCT CAAAATCCCAATCTA AA TTTAATTTT GGGTAATAT TGAAAGA

inhW[m1-i61]-Y1 CATAACACAATCACA TCT CACTAAACCATACAT AA TTTAATTTT GGTGTAATG TGAAAGA

inhW[m1-i62]-Y1 CATAACACAATCACA TCT CAACAACCCAAATCC AA TTTAATTTT GGTAAAAGT TGAAAGA

inhW[m1-i63]-Y1 CATAACACAATCACA TCT CAATAAAACACCCTA AA TTTAATTTT GAATATGGT TGAAAGA

inhW[m1-i64]-Y1 CATAACACAATCACA TCT CAAATCACCAAAACA AA TTTAATTTT GTTGGGAGG TGAAAGA

inhW[m1-i65]-Y1 CATAACACAATCACA TCT CATCTTATCAAACAC AA TTTAATTTT GGTAGTGGA TGAAAGA

inhW[m1-i66]-Y1 CATAACACAATCACA TCT CATACCACCATCCTC AA TTTAATTTT GATAAGGGA TGAAAGA

inhW[m1-i67]-Y1 CATAACACAATCACA TCT CACAAACTCACCTCA AA TTTAATTTT GAATGGAAA TGAAAGA

inhW[m1-i68]-Y1 CATAACACAATCACA TCT CAACCCACCAATTTT AA TTTAATTTT GAAGTGTGT TGAAAGA

inhW[m1-i69]-Y1 CATAACACAATCACA TCT CATTCACCCATATTA AA TTTAATTTT GATTAGTGG TGAAAGA

inhW[m1-i70]-Y1 CATAACACAATCACA TCT CACCCAATCATAAAC AA TTTAATTTT GTGTGAATT TGAAAGA

inhW[m1-i71]-Y1 CATAACACAATCACA TCT CACACCAACAACCAT AA TTTAATTTT GAGGAATAA TGAAAGA

inhW[m1-i72]-Y1 CATAACACAATCACA TCT CACTCTAACACTTAT AA TTTAATTTT GTAGAGAGT TGAAAGA

inhW[m1-i73]-Y1 CATAACACAATCACA TCT CAACAATTCACCTAC AA TTTAATTTT GTGTTTGAA TGAAAGA

inhW[m1-i74]-Y1 CATAACACAATCACA TCT CACCCTACCACTCCC AA TTTAATTTT GATAATGAG TGAAAGA

inhW[m1-i75]-Y1 CATAACACAATCACA TCT CACACTTCCAATTAT AA TTTAATTTT GTGGTGTTA TGAAAGA

inhW[m1-i76]-Y1 CATAACACAATCACA TCT CACAATATCATCACC AA TTTAATTTT GATAGATGT TGAAAGA

inhW[m1-i77]-Y1 CATAACACAATCACA TCT CAAACTCTCATCATT AA TTTAATTTT GATATGTTG TGAAAGA

inhW[m1-i78]-Y1 CATAACACAATCACA TCT CAATTTCACACCACC AA TTTAATTTT GTAAGAGTT TGAAAGA

inhW[m1-i79]-Y1 CATAACACAATCACA TCT CAACTTACCATTCAT AA TTTAATTTT GTGATGGAT TGAAAGA

inhW[m1-i80]-Y1 CATAACACAATCACA TCT CATCCATACAACTAT AA TTTAATTTT GTTAAGAAG TGAAAGA

inhW[m1-i81]-Y1 CATAACACAATCACA TCT CAACTCTACACATTC AA TTTAATTTT GATGGTTAT TGAAAGA

inhW[m1-i82]-Y1 CATAACACAATCACA TCT CAAATCCTCATTTTC AA TTTAATTTT GAAATAGTG TGAAAGA

inhW[m1-i83]-Y1 CATAACACAATCACA TCT CACCATTACAAACAT AA TTTAATTTT GAGAAGTAT TGAAAGA

inhW[m1-i84]-Y1 CATAACACAATCACA TCT CATATATTCAACTCC AA TTTAATTTT GTAGGGTGA TGAAAGA

inhW[m1-i85]-Y1 CATAACACAATCACA TCT CAATCACTCATTACA AA TTTAATTTT GTGGGTGTA TGAAAGA

inhW[m1-i86]-Y1 CATAACACAATCACA TCT CACCAACACAAAATA AA TTTAATTTT GGAGATTGG TGAAAGA

inhW[m1-i87]-Y1 CATAACACAATCACA TCT CAAACCCACATATAT AA TTTAATTTT GTTATTGTG TGAAAGA

inhW[m1-i88]-Y1 CATAACACAATCACA TCT CATCTCTCCATAAAT AA TTTAATTTT GGAATTTTG TGAAAGA

inhW[m1-i89]-Y1 CATAACACAATCACA TCT CATATCAACATCTCA AA TTTAATTTT GGGAGTATT TGAAAGA

inhW[m1-i90]-Y1 CATAACACAATCACA TCT CACATCCACACTACA AA TTTAATTTT GAGGTTAGA TGAAAGA

inhW[m1-i91]-Y1 CATAACACAATCACA TCT CATCAAACCACAACA AA TTTAATTTT GGTGAGTGA TGAAAGA

inhW[m1-i92]-Y1 CATAACACAATCACA TCT CAAACTTTCACACAC AA TTTAATTTT GGTTGAGAA TGAAAGA

inhW[m1-i93]-Y1 CATAACACAATCACA TCT CACCTACCCATCTAT AA TTTAATTTT GTATGTAAG TGAAAGA

inhW[m1-i94]-Y1 CATAACACAATCACA TCT CACCTTTACAATTCC AA TTTAATTTT GTAGTAGAT TGAAAGA

inhW[m1-i95]-Y1 CATAACACAATCACA TCT CATTCCTTCACATAT AA TTTAATTTT GATGTTTAG TGAAAGA

inhW[m1-i96]-Y1 CATAACACAATCACA TCT CACAACTCCACCATT AA TTTAATTTT GGATTAAGT TGAAAGA

inhW[m1-i97]-Y1 CATAACACAATCACA TCT CAATACTCCATCAAT AA TTTAATTTT GTGAGAAAA TGAAAGA

inhW[m1-i98]-Y1 CATAACACAATCACA TCT CACTTATCCAACATT AA TTTAATTTT GAGTAAAGA TGAAAGA

inhW[m1-i99]-Y1 CATAACACAATCACA TCT CACATAATCACCCTT AA TTTAATTTT GTGGATAAA TGAAAGA

inhW[m1-i100]-Y1 CATAACACAATCACA TCT CATACCCTCACTAAC AA TTTAATTTT GATTTAGGA TGAAAGA
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Table S11: DNA sequences of top strands in the weight gates for reading out the learned weights
in memory 2.

Name Sequence

inhW[m2-i1]-Y2 CAAATCTTCATCCCA TCT CAACTTCCCACACTT AA TTTAATTTT GGAGGATAA AATAGAG

inhW[m2-i2]-Y2 CAAATCTTCATCCCA TCT CATCTAACCAACTTA AA TTTAATTTT GAATTTGGA AATAGAG

inhW[m2-i3]-Y2 CAAATCTTCATCCCA TCT CACCTAAACAATACT AA TTTAATTTT GGATGGTGT AATAGAG

inhW[m2-i4]-Y2 CAAATCTTCATCCCA TCT CATTACATCACAATC AA TTTAATTTT GGAGTGGAG AATAGAG

inhW[m2-i5]-Y2 CAAATCTTCATCCCA TCT CAACCTTACATTATC AA TTTAATTTT GTAATAAGG AATAGAG

inhW[m2-i6]-Y2 CAAATCTTCATCCCA TCT CAATCCATCATCTTA AA TTTAATTTT GTTTTGAGG AATAGAG

inhW[m2-i7]-Y2 CAAATCTTCATCCCA TCT CATCACTACATCCAC AA TTTAATTTT GAGAGAGAT AATAGAG

inhW[m2-i8]-Y2 CAAATCTTCATCCCA TCT CATCCCAACATACCT AA TTTAATTTT GAAGAAATG AATAGAG

inhW[m2-i9]-Y2 CAAATCTTCATCCCA TCT CAATCTCCCAACCCA AA TTTAATTTT GGTAGGGTT AATAGAG

inhW[m2-i10]-Y2 CAAATCTTCATCCCA TCT CATTTCCACAACTTT AA TTTAATTTT GAGATATGA AATAGAG

inhW[m2-i11]-Y2 CAAATCTTCATCCCA TCT CATCTTTTCACCACT AA TTTAATTTT GTATGATTG AATAGAG

inhW[m2-i12]-Y2 CAAATCTTCATCCCA TCT CAATTACTCAAACTC AA TTTAATTTT GGGAAATGG AATAGAG

inhW[m2-i13]-Y2 CAAATCTTCATCCCA TCT CACTATCACAACCTC AA TTTAATTTT GGTTATGTT AATAGAG

inhW[m2-i14]-Y2 CAAATCTTCATCCCA TCT CACAACAACACACCC AA TTTAATTTT GTGTTAAAG AATAGAG

inhW[m2-i15]-Y2 CAAATCTTCATCCCA TCT CAATCATACATATCC AA TTTAATTTT GTATAGGTG AATAGAG

inhW[m2-i16]-Y2 CAAATCTTCATCCCA TCT CACCCTTTCATACTA AA TTTAATTTT GTTGATGGG AATAGAG

inhW[m2-i17]-Y2 CAAATCTTCATCCCA TCT CATCCACTCAATCCC AA TTTAATTTT GATGAGAAT AATAGAG

inhW[m2-i18]-Y2 CAAATCTTCATCCCA TCT CATACTCACATAATC AA TTTAATTTT GGGTTATTA AATAGAG

inhW[m2-i19]-Y2 CAAATCTTCATCCCA TCT CATACACCCACTTCT AA TTTAATTTT GGATAAGTA AATAGAG

inhW[m2-i20]-Y2 CAAATCTTCATCCCA TCT CACCTTCTCATATCT AA TTTAATTTT GAGTTGAAT AATAGAG

inhW[m2-i21]-Y2 CAAATCTTCATCCCA TCT CATTATTTCAACCCT AA TTTAATTTT GGAAGTGAG AATAGAG

inhW[m2-i22]-Y2 CAAATCTTCATCCCA TCT CATTAATACACTTCC AA TTTAATTTT GATGTGATA AATAGAG

inhW[m2-i23]-Y2 CAAATCTTCATCCCA TCT CATTTACACACACAT AA TTTAATTTT GGAATGAGA AATAGAG

inhW[m2-i24]-Y2 CAAATCTTCATCCCA TCT CATAATTCCATCTTC AA TTTAATTTT GTTTGTGAT AATAGAG

inhW[m2-i25]-Y2 CAAATCTTCATCCCA TCT CAACACTTCACTCCT AA TTTAATTTT GTTGGAAAT AATAGAG

inhW[m2-i26]-Y2 CAAATCTTCATCCCA TCT CATCTATCCACTATC AA TTTAATTTT GGTTTTATG AATAGAG

inhW[m2-i27]-Y2 CAAATCTTCATCCCA TCT CACTCCTACAAATTA AA TTTAATTTT GAAAGGGAA AATAGAG

inhW[m2-i28]-Y2 CAAATCTTCATCCCA TCT CACTACCTCATACCC AA TTTAATTTT GTGTATAGT AATAGAG

inhW[m2-i29]-Y2 CAAATCTTCATCCCA TCT CATACCTACACTCTA AA TTTAATTTT GTAAAAGGA AATAGAG

inhW[m2-i30]-Y2 CAAATCTTCATCCCA TCT CACTCACACACCTTC AA TTTAATTTT GGTGGTATA AATAGAG

inhW[m2-i31]-Y2 CAAATCTTCATCCCA TCT CAACTACACATTCTA AA TTTAATTTT GTTAGGTAA AATAGAG

inhW[m2-i32]-Y2 CAAATCTTCATCCCA TCT CATATTCACAAACCA AA TTTAATTTT GGATATTGA AATAGAG

inhW[m2-i33]-Y2 CAAATCTTCATCCCA TCT CACACATTCAAAACT AA TTTAATTTT GTGGAGGAG AATAGAG

inhW[m2-i34]-Y2 CAAATCTTCATCCCA TCT CACTTTTCCACTTTA AA TTTAATTTT GTTGTGGGT AATAGAG

inhW[m2-i35]-Y2 CAAATCTTCATCCCA TCT CAAATACCCACCCAC AA TTTAATTTT GAAGTTGTT AATAGAG

inhW[m2-i36]-Y2 CAAATCTTCATCCCA TCT CACCACATCATTATT AA TTTAATTTT GAGGTATTT AATAGAG

inhW[m2-i37]-Y2 CAAATCTTCATCCCA TCT CATCCCTTCAATATA AA TTTAATTTT GTATTGGGA AATAGAG

inhW[m2-i38]-Y2 CAAATCTTCATCCCA TCT CAATTCATCAACAAC AA TTTAATTTT GAGAGGATG AATAGAG

inhW[m2-i39]-Y2 CAAATCTTCATCCCA TCT CATAAACACATCCCT AA TTTAATTTT GTAAGTAGA AATAGAG

inhW[m2-i40]-Y2 CAAATCTTCATCCCA TCT CACATATACACAAAC AA TTTAATTTT GTAGGTTTT AATAGAG

inhW[m2-i41]-Y2 CAAATCTTCATCCCA TCT CATCCTATCACTTTC AA TTTAATTTT GGGTGGTTG AATAGAG

inhW[m2-i42]-Y2 CAAATCTTCATCCCA TCT CAAAACCACAATCAC AA TTTAATTTT GAGGGAATA AATAGAG

inhW[m2-i43]-Y2 CAAATCTTCATCCCA TCT CATCATAACAACACC AA TTTAATTTT GTTTAAGGT AATAGAG

inhW[m2-i44]-Y2 CAAATCTTCATCCCA TCT CACAAATTCATTCAC AA TTTAATTTT GAAAATAGG AATAGAG

inhW[m2-i45]-Y2 CAAATCTTCATCCCA TCT CATTATCCCATAACT AA TTTAATTTT GATTTGGTT AATAGAG

inhW[m2-i46]-Y2 CAAATCTTCATCCCA TCT CAATATCTCACTCAT AA TTTAATTTT GGGTAGATT AATAGAG

inhW[m2-i47]-Y2 CAAATCTTCATCCCA TCT CACCAATCCATTTCA AA TTTAATTTT GTTTGGGTA AATAGAG

inhW[m2-i48]-Y2 CAAATCTTCATCCCA TCT CATTTTAACATTCCC AA TTTAATTTT GATTGAAGG AATAGAG

inhW[m2-i49]-Y2 CAAATCTTCATCCCA TCT CACCTCCTCAACACA AA TTTAATTTT GGGAATTAA AATAGAG

inhW[m2-i50]-Y2 CAAATCTTCATCCCA TCT CATTCTTACACCAAC AA TTTAATTTT GAGTTTTGT AATAGAG
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Name Sequence

inhW[m2-i51]-Y2 CAAATCTTCATCCCA TCT CACATTCCCATTAAC AA TTTAATTTT GGGATTAAT AATAGAG

inhW[m2-i52]-Y2 CAAATCTTCATCCCA TCT CAACCATCCAAACTA AA TTTAATTTT GTGAGTTGG AATAGAG

inhW[m2-i53]-Y2 CAAATCTTCATCCCA TCT CAAACAACCATTTAC AA TTTAATTTT GAGTGTTTA AATAGAG

inhW[m2-i54]-Y2 CAAATCTTCATCCCA TCT CAATCCTCCAATACC AA TTTAATTTT GAAGGAGGG AATAGAG

inhW[m2-i55]-Y2 CAAATCTTCATCCCA TCT CATCACACCACCTAT AA TTTAATTTT GGTATATAG AATAGAG

inhW[m2-i56]-Y2 CAAATCTTCATCCCA TCT CAACCAAACATCACT AA TTTAATTTT GAATTGTAG AATAGAG

inhW[m2-i57]-Y2 CAAATCTTCATCCCA TCT CATAACCTCAAATCT AA TTTAATTTT GTGAATATG AATAGAG

inhW[m2-i58]-Y2 CAAATCTTCATCCCA TCT CAATATTCCACATCA AA TTTAATTTT GGAAAGTTT AATAGAG

inhW[m2-i59]-Y2 CAAATCTTCATCCCA TCT CACTATACCAATAAC AA TTTAATTTT GGTGAAGAG AATAGAG

inhW[m2-i60]-Y2 CAAATCTTCATCCCA TCT CAAAATCCCAATCTA AA TTTAATTTT GGGTAATAT AATAGAG

inhW[m2-i61]-Y2 CAAATCTTCATCCCA TCT CACTAAACCATACAT AA TTTAATTTT GGTGTAATG AATAGAG

inhW[m2-i62]-Y2 CAAATCTTCATCCCA TCT CAACAACCCAAATCC AA TTTAATTTT GGTAAAAGT AATAGAG

inhW[m2-i63]-Y2 CAAATCTTCATCCCA TCT CAATAAAACACCCTA AA TTTAATTTT GAATATGGT AATAGAG

inhW[m2-i64]-Y2 CAAATCTTCATCCCA TCT CAAATCACCAAAACA AA TTTAATTTT GTTGGGAGG AATAGAG

inhW[m2-i65]-Y2 CAAATCTTCATCCCA TCT CATCTTATCAAACAC AA TTTAATTTT GGTAGTGGA AATAGAG

inhW[m2-i66]-Y2 CAAATCTTCATCCCA TCT CATACCACCATCCTC AA TTTAATTTT GATAAGGGA AATAGAG

inhW[m2-i67]-Y2 CAAATCTTCATCCCA TCT CACAAACTCACCTCA AA TTTAATTTT GAATGGAAA AATAGAG

inhW[m2-i68]-Y2 CAAATCTTCATCCCA TCT CAACCCACCAATTTT AA TTTAATTTT GAAGTGTGT AATAGAG

inhW[m2-i69]-Y2 CAAATCTTCATCCCA TCT CATTCACCCATATTA AA TTTAATTTT GATTAGTGG AATAGAG

inhW[m2-i70]-Y2 CAAATCTTCATCCCA TCT CACCCAATCATAAAC AA TTTAATTTT GTGTGAATT AATAGAG

inhW[m2-i71]-Y2 CAAATCTTCATCCCA TCT CACACCAACAACCAT AA TTTAATTTT GAGGAATAA AATAGAG

inhW[m2-i72]-Y2 CAAATCTTCATCCCA TCT CACTCTAACACTTAT AA TTTAATTTT GTAGAGAGT AATAGAG

inhW[m2-i73]-Y2 CAAATCTTCATCCCA TCT CAACAATTCACCTAC AA TTTAATTTT GTGTTTGAA AATAGAG

inhW[m2-i74]-Y2 CAAATCTTCATCCCA TCT CACCCTACCACTCCC AA TTTAATTTT GATAATGAG AATAGAG

inhW[m2-i75]-Y2 CAAATCTTCATCCCA TCT CACACTTCCAATTAT AA TTTAATTTT GTGGTGTTA AATAGAG

inhW[m2-i76]-Y2 CAAATCTTCATCCCA TCT CACAATATCATCACC AA TTTAATTTT GATAGATGT AATAGAG

inhW[m2-i77]-Y2 CAAATCTTCATCCCA TCT CAAACTCTCATCATT AA TTTAATTTT GATATGTTG AATAGAG

inhW[m2-i78]-Y2 CAAATCTTCATCCCA TCT CAATTTCACACCACC AA TTTAATTTT GTAAGAGTT AATAGAG

inhW[m2-i79]-Y2 CAAATCTTCATCCCA TCT CAACTTACCATTCAT AA TTTAATTTT GTGATGGAT AATAGAG

inhW[m2-i80]-Y2 CAAATCTTCATCCCA TCT CATCCATACAACTAT AA TTTAATTTT GTTAAGAAG AATAGAG

inhW[m2-i81]-Y2 CAAATCTTCATCCCA TCT CAACTCTACACATTC AA TTTAATTTT GATGGTTAT AATAGAG

inhW[m2-i82]-Y2 CAAATCTTCATCCCA TCT CAAATCCTCATTTTC AA TTTAATTTT GAAATAGTG AATAGAG

inhW[m2-i83]-Y2 CAAATCTTCATCCCA TCT CACCATTACAAACAT AA TTTAATTTT GAGAAGTAT AATAGAG

inhW[m2-i84]-Y2 CAAATCTTCATCCCA TCT CATATATTCAACTCC AA TTTAATTTT GTAGGGTGA AATAGAG

inhW[m2-i85]-Y2 CAAATCTTCATCCCA TCT CAATCACTCATTACA AA TTTAATTTT GTGGGTGTA AATAGAG

inhW[m2-i86]-Y2 CAAATCTTCATCCCA TCT CACCAACACAAAATA AA TTTAATTTT GGAGATTGG AATAGAG

inhW[m2-i87]-Y2 CAAATCTTCATCCCA TCT CAAACCCACATATAT AA TTTAATTTT GTTATTGTG AATAGAG

inhW[m2-i88]-Y2 CAAATCTTCATCCCA TCT CATCTCTCCATAAAT AA TTTAATTTT GGAATTTTG AATAGAG

inhW[m2-i89]-Y2 CAAATCTTCATCCCA TCT CATATCAACATCTCA AA TTTAATTTT GGGAGTATT AATAGAG

inhW[m2-i90]-Y2 CAAATCTTCATCCCA TCT CACATCCACACTACA AA TTTAATTTT GAGGTTAGA AATAGAG

inhW[m2-i91]-Y2 CAAATCTTCATCCCA TCT CATCAAACCACAACA AA TTTAATTTT GGTGAGTGA AATAGAG

inhW[m2-i92]-Y2 CAAATCTTCATCCCA TCT CAAACTTTCACACAC AA TTTAATTTT GGTTGAGAA AATAGAG

inhW[m2-i93]-Y2 CAAATCTTCATCCCA TCT CACCTACCCATCTAT AA TTTAATTTT GTATGTAAG AATAGAG

inhW[m2-i94]-Y2 CAAATCTTCATCCCA TCT CACCTTTACAATTCC AA TTTAATTTT GTAGTAGAT AATAGAG

inhW[m2-i95]-Y2 CAAATCTTCATCCCA TCT CATTCCTTCACATAT AA TTTAATTTT GATGTTTAG AATAGAG

inhW[m2-i96]-Y2 CAAATCTTCATCCCA TCT CACAACTCCACCATT AA TTTAATTTT GGATTAAGT AATAGAG

inhW[m2-i97]-Y2 CAAATCTTCATCCCA TCT CAATACTCCATCAAT AA TTTAATTTT GTGAGAAAA AATAGAG

inhW[m2-i98]-Y2 CAAATCTTCATCCCA TCT CACTTATCCAACATT AA TTTAATTTT GAGTAAAGA AATAGAG

inhW[m2-i99]-Y2 CAAATCTTCATCCCA TCT CACATAATCACCCTT AA TTTAATTTT GTGGATAAA AATAGAG

inhW[m2-i100]-Y2 CAAATCTTCATCCCA TCT CATACCCTCACTAAC AA TTTAATTTT GATTTAGGA AATAGAG
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Table S12: DNA sequences of activator strands for testing the activatable weights in memory 1.

Name Sequence

Act[m1-i1] TCTTTCA TTATCCTCC AAAATTAAA TT

Act[m1-i2] TCTTTCA TCCAAATTC AAAATTAAA TT

Act[m1-i3] TCTTTCA ACACCATCC AAAATTAAA TT

Act[m1-i4] TCTTTCA CTCCACTCC AAAATTAAA TT

Act[m1-i5] TCTTTCA CCTTATTAC AAAATTAAA TT

Act[m1-i6] TCTTTCA CCTCAAAAC AAAATTAAA TT

Act[m1-i7] TCTTTCA ATCTCTCTC AAAATTAAA TT

Act[m1-i8] TCTTTCA CATTTCTTC AAAATTAAA TT

Act[m1-i9] TCTTTCA AACCCTACC AAAATTAAA TT

Act[m1-i10] TCTTTCA TCATATCTC AAAATTAAA TT

Act[m1-i11] TCTTTCA CAATCATAC AAAATTAAA TT

Act[m1-i12] TCTTTCA CCATTTCCC AAAATTAAA TT

Act[m1-i13] TCTTTCA AACATAACC AAAATTAAA TT

Act[m1-i14] TCTTTCA CTTTAACAC AAAATTAAA TT

Act[m1-i15] TCTTTCA CACCTATAC AAAATTAAA TT

Act[m1-i16] TCTTTCA CCCATCAAC AAAATTAAA TT

Act[m1-i17] TCTTTCA ATTCTCATC AAAATTAAA TT

Act[m1-i18] TCTTTCA TAATAACCC AAAATTAAA TT

Act[m1-i19] TCTTTCA TACTTATCC AAAATTAAA TT

Act[m1-i20] TCTTTCA ATTCAACTC AAAATTAAA TT

Act[m1-i21] TCTTTCA CTCACTTCC AAAATTAAA TT

Act[m1-i22] TCTTTCA TATCACATC AAAATTAAA TT

Act[m1-i23] TCTTTCA TCTCATTCC AAAATTAAA TT

Act[m1-i24] TCTTTCA ATCACAAAC AAAATTAAA TT

Act[m1-i25] TCTTTCA ATTTCCAAC AAAATTAAA TT

Act[m1-i26] TCTTTCA CATAAAACC AAAATTAAA TT

Act[m1-i27] TCTTTCA TTCCCTTTC AAAATTAAA TT

Act[m1-i28] TCTTTCA ACTATACAC AAAATTAAA TT

Act[m1-i29] TCTTTCA TCCTTTTAC AAAATTAAA TT

Act[m1-i30] TCTTTCA TATACCACC AAAATTAAA TT

Act[m1-i31] TCTTTCA TTACCTAAC AAAATTAAA TT

Act[m1-i32] TCTTTCA TCAATATCC AAAATTAAA TT

Act[m1-i33] TCTTTCA CTCCTCCAC AAAATTAAA TT

Act[m1-i34] TCTTTCA ACCCACAAC AAAATTAAA TT

Act[m1-i35] TCTTTCA AACAACTTC AAAATTAAA TT

Act[m1-i36] TCTTTCA AAATACCTC AAAATTAAA TT

Act[m1-i37] TCTTTCA TCCCAATAC AAAATTAAA TT

Act[m1-i38] TCTTTCA CATCCTCTC AAAATTAAA TT

Act[m1-i39] TCTTTCA TCTACTTAC AAAATTAAA TT

Act[m1-i40] TCTTTCA AAAACCTAC AAAATTAAA TT

Act[m1-i41] TCTTTCA CAACCACCC AAAATTAAA TT

Act[m1-i42] TCTTTCA TATTCCCTC AAAATTAAA TT

Act[m1-i43] TCTTTCA ACCTTAAAC AAAATTAAA TT

Act[m1-i44] TCTTTCA CCTATTTTC AAAATTAAA TT

Act[m1-i45] TCTTTCA AACCAAATC AAAATTAAA TT

Act[m1-i46] TCTTTCA AATCTACCC AAAATTAAA TT

Act[m1-i47] TCTTTCA TACCCAAAC AAAATTAAA TT

Act[m1-i48] TCTTTCA CCTTCAATC AAAATTAAA TT

Act[m1-i49] TCTTTCA TTAATTCCC AAAATTAAA TT

Act[m1-i50] TCTTTCA ACAAAACTC AAAATTAAA TT

Act[m1-i51] TCTTTCA ATTAATCCC AAAATTAAA TT
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Name Sequence

Act[m1-i52] TCTTTCA CCAACTCAC AAAATTAAA TT

Act[m1-i53] TCTTTCA TAAACACTC AAAATTAAA TT

Act[m1-i54] TCTTTCA CCCTCCTTC AAAATTAAA TT

Act[m1-i55] TCTTTCA CTATATACC AAAATTAAA TT

Act[m1-i56] TCTTTCA CTACAATTC AAAATTAAA TT

Act[m1-i57] TCTTTCA CATATTCAC AAAATTAAA TT

Act[m1-i58] TCTTTCA AAACTTTCC AAAATTAAA TT

Act[m1-i59] TCTTTCA CTCTTCACC AAAATTAAA TT

Act[m1-i60] TCTTTCA ATATTACCC AAAATTAAA TT

Act[m1-i61] TCTTTCA CATTACACC AAAATTAAA TT

Act[m1-i62] TCTTTCA ACTTTTACC AAAATTAAA TT

Act[m1-i63] TCTTTCA ACCATATTC AAAATTAAA TT

Act[m1-i64] TCTTTCA CCTCCCAAC AAAATTAAA TT

Act[m1-i65] TCTTTCA TCCACTACC AAAATTAAA TT

Act[m1-i66] TCTTTCA TCCCTTATC AAAATTAAA TT

Act[m1-i67] TCTTTCA TTTCCATTC AAAATTAAA TT

Act[m1-i68] TCTTTCA ACACACTTC AAAATTAAA TT

Act[m1-i69] TCTTTCA CCACTAATC AAAATTAAA TT

Act[m1-i70] TCTTTCA AATTCACAC AAAATTAAA TT

Act[m1-i71] TCTTTCA TTATTCCTC AAAATTAAA TT

Act[m1-i72] TCTTTCA ACTCTCTAC AAAATTAAA TT

Act[m1-i73] TCTTTCA TTCAAACAC AAAATTAAA TT

Act[m1-i74] TCTTTCA CTCATTATC AAAATTAAA TT

Act[m1-i75] TCTTTCA TAACACCAC AAAATTAAA TT

Act[m1-i76] TCTTTCA ACATCTATC AAAATTAAA TT

Act[m1-i77] TCTTTCA CAACATATC AAAATTAAA TT

Act[m1-i78] TCTTTCA AACTCTTAC AAAATTAAA TT

Act[m1-i79] TCTTTCA ATCCATCAC AAAATTAAA TT

Act[m1-i80] TCTTTCA CTTCTTAAC AAAATTAAA TT

Act[m1-i81] TCTTTCA ATAACCATC AAAATTAAA TT

Act[m1-i82] TCTTTCA CACTATTTC AAAATTAAA TT

Act[m1-i83] TCTTTCA ATACTTCTC AAAATTAAA TT

Act[m1-i84] TCTTTCA TCACCCTAC AAAATTAAA TT

Act[m1-i85] TCTTTCA TACACCCAC AAAATTAAA TT

Act[m1-i86] TCTTTCA CCAATCTCC AAAATTAAA TT

Act[m1-i87] TCTTTCA CACAATAAC AAAATTAAA TT

Act[m1-i88] TCTTTCA CAAAATTCC AAAATTAAA TT

Act[m1-i89] TCTTTCA AATACTCCC AAAATTAAA TT

Act[m1-i90] TCTTTCA TCTAACCTC AAAATTAAA TT

Act[m1-i91] TCTTTCA TCACTCACC AAAATTAAA TT

Act[m1-i92] TCTTTCA TTCTCAACC AAAATTAAA TT

Act[m1-i93] TCTTTCA CTTACATAC AAAATTAAA TT

Act[m1-i94] TCTTTCA ATCTACTAC AAAATTAAA TT

Act[m1-i95] TCTTTCA CTAAACATC AAAATTAAA TT

Act[m1-i96] TCTTTCA ACTTAATCC AAAATTAAA TT

Act[m1-i97] TCTTTCA TTTTCTCAC AAAATTAAA TT

Act[m1-i98] TCTTTCA TCTTTACTC AAAATTAAA TT

Act[m1-i99] TCTTTCA TTTATCCAC AAAATTAAA TT

Act[m1-i100] TCTTTCA TCCTAAATC AAAATTAAA TT
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Table S13: DNA sequences of activator strands for testing the activatable weights in memory 2.

Name Sequence

Act[m2-i1] CTCTATT TTATCCTCC AAAATTAAA TT

Act[m2-i2] CTCTATT TCCAAATTC AAAATTAAA TT

Act[m2-i3] CTCTATT ACACCATCC AAAATTAAA TT

Act[m2-i4] CTCTATT CTCCACTCC AAAATTAAA TT

Act[m2-i5] CTCTATT CCTTATTAC AAAATTAAA TT

Act[m2-i6] CTCTATT CCTCAAAAC AAAATTAAA TT

Act[m2-i7] CTCTATT ATCTCTCTC AAAATTAAA TT

Act[m2-i8] CTCTATT CATTTCTTC AAAATTAAA TT

Act[m2-i9] CTCTATT AACCCTACC AAAATTAAA TT

Act[m2-i10] CTCTATT TCATATCTC AAAATTAAA TT

Act[m2-i11] CTCTATT CAATCATAC AAAATTAAA TT

Act[m2-i12] CTCTATT CCATTTCCC AAAATTAAA TT

Act[m2-i13] CTCTATT AACATAACC AAAATTAAA TT

Act[m2-i14] CTCTATT CTTTAACAC AAAATTAAA TT

Act[m2-i15] CTCTATT CACCTATAC AAAATTAAA TT

Act[m2-i16] CTCTATT CCCATCAAC AAAATTAAA TT

Act[m2-i17] CTCTATT ATTCTCATC AAAATTAAA TT

Act[m2-i18] CTCTATT TAATAACCC AAAATTAAA TT

Act[m2-i19] CTCTATT TACTTATCC AAAATTAAA TT

Act[m2-i20] CTCTATT ATTCAACTC AAAATTAAA TT

Act[m2-i21] CTCTATT CTCACTTCC AAAATTAAA TT

Act[m2-i22] CTCTATT TATCACATC AAAATTAAA TT

Act[m2-i23] CTCTATT TCTCATTCC AAAATTAAA TT

Act[m2-i24] CTCTATT ATCACAAAC AAAATTAAA TT

Act[m2-i25] CTCTATT ATTTCCAAC AAAATTAAA TT

Act[m2-i26] CTCTATT CATAAAACC AAAATTAAA TT

Act[m2-i27] CTCTATT TTCCCTTTC AAAATTAAA TT

Act[m2-i28] CTCTATT ACTATACAC AAAATTAAA TT

Act[m2-i29] CTCTATT TCCTTTTAC AAAATTAAA TT

Act[m2-i30] CTCTATT TATACCACC AAAATTAAA TT

Act[m2-i31] CTCTATT TTACCTAAC AAAATTAAA TT

Act[m2-i32] CTCTATT TCAATATCC AAAATTAAA TT

Act[m2-i33] CTCTATT CTCCTCCAC AAAATTAAA TT

Act[m2-i34] CTCTATT ACCCACAAC AAAATTAAA TT

Act[m2-i35] CTCTATT AACAACTTC AAAATTAAA TT

Act[m2-i36] CTCTATT AAATACCTC AAAATTAAA TT

Act[m2-i37] CTCTATT TCCCAATAC AAAATTAAA TT

Act[m2-i38] CTCTATT CATCCTCTC AAAATTAAA TT

Act[m2-i39] CTCTATT TCTACTTAC AAAATTAAA TT

Act[m2-i40] CTCTATT AAAACCTAC AAAATTAAA TT

Act[m2-i41] CTCTATT CAACCACCC AAAATTAAA TT

Act[m2-i42] CTCTATT TATTCCCTC AAAATTAAA TT

Act[m2-i43] CTCTATT ACCTTAAAC AAAATTAAA TT

Act[m2-i44] CTCTATT CCTATTTTC AAAATTAAA TT

Act[m2-i45] CTCTATT AACCAAATC AAAATTAAA TT

Act[m2-i46] CTCTATT AATCTACCC AAAATTAAA TT

Act[m2-i47] CTCTATT TACCCAAAC AAAATTAAA TT

Act[m2-i48] CTCTATT CCTTCAATC AAAATTAAA TT

Act[m2-i49] CTCTATT TTAATTCCC AAAATTAAA TT

Act[m2-i50] CTCTATT ACAAAACTC AAAATTAAA TT

Act[m2-i51] CTCTATT ATTAATCCC AAAATTAAA TT
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Name Sequence

Act[m2-i52] CTCTATT CCAACTCAC AAAATTAAA TT

Act[m2-i53] CTCTATT TAAACACTC AAAATTAAA TT

Act[m2-i54] CTCTATT CCCTCCTTC AAAATTAAA TT

Act[m2-i55] CTCTATT CTATATACC AAAATTAAA TT

Act[m2-i56] CTCTATT CTACAATTC AAAATTAAA TT

Act[m2-i57] CTCTATT CATATTCAC AAAATTAAA TT

Act[m2-i58] CTCTATT AAACTTTCC AAAATTAAA TT

Act[m2-i59] CTCTATT CTCTTCACC AAAATTAAA TT

Act[m2-i60] CTCTATT ATATTACCC AAAATTAAA TT

Act[m2-i61] CTCTATT CATTACACC AAAATTAAA TT

Act[m2-i62] CTCTATT ACTTTTACC AAAATTAAA TT

Act[m2-i63] CTCTATT ACCATATTC AAAATTAAA TT

Act[m2-i64] CTCTATT CCTCCCAAC AAAATTAAA TT

Act[m2-i65] CTCTATT TCCACTACC AAAATTAAA TT

Act[m2-i66] CTCTATT TCCCTTATC AAAATTAAA TT

Act[m2-i67] CTCTATT TTTCCATTC AAAATTAAA TT

Act[m2-i68] CTCTATT ACACACTTC AAAATTAAA TT

Act[m2-i69] CTCTATT CCACTAATC AAAATTAAA TT

Act[m2-i70] CTCTATT AATTCACAC AAAATTAAA TT

Act[m2-i71] CTCTATT TTATTCCTC AAAATTAAA TT

Act[m2-i72] CTCTATT ACTCTCTAC AAAATTAAA TT

Act[m2-i73] CTCTATT TTCAAACAC AAAATTAAA TT

Act[m2-i74] CTCTATT CTCATTATC AAAATTAAA TT

Act[m2-i75] CTCTATT TAACACCAC AAAATTAAA TT

Act[m2-i76] CTCTATT ACATCTATC AAAATTAAA TT

Act[m2-i77] CTCTATT CAACATATC AAAATTAAA TT

Act[m2-i78] CTCTATT AACTCTTAC AAAATTAAA TT

Act[m2-i79] CTCTATT ATCCATCAC AAAATTAAA TT

Act[m2-i80] CTCTATT CTTCTTAAC AAAATTAAA TT

Act[m2-i81] CTCTATT ATAACCATC AAAATTAAA TT

Act[m2-i82] CTCTATT CACTATTTC AAAATTAAA TT

Act[m2-i83] CTCTATT ATACTTCTC AAAATTAAA TT

Act[m2-i84] CTCTATT TCACCCTAC AAAATTAAA TT

Act[m2-i85] CTCTATT TACACCCAC AAAATTAAA TT

Act[m2-i86] CTCTATT CCAATCTCC AAAATTAAA TT

Act[m2-i87] CTCTATT CACAATAAC AAAATTAAA TT

Act[m2-i88] CTCTATT CAAAATTCC AAAATTAAA TT

Act[m2-i89] CTCTATT AATACTCCC AAAATTAAA TT

Act[m2-i90] CTCTATT TCTAACCTC AAAATTAAA TT

Act[m2-i91] CTCTATT TCACTCACC AAAATTAAA TT

Act[m2-i92] CTCTATT TTCTCAACC AAAATTAAA TT

Act[m2-i93] CTCTATT CTTACATAC AAAATTAAA TT

Act[m2-i94] CTCTATT ATCTACTAC AAAATTAAA TT

Act[m2-i95] CTCTATT CTAAACATC AAAATTAAA TT

Act[m2-i96] CTCTATT ACTTAATCC AAAATTAAA TT

Act[m2-i97] CTCTATT TTTTCTCAC AAAATTAAA TT

Act[m2-i98] CTCTATT TCTTTACTC AAAATTAAA TT

Act[m2-i99] CTCTATT TTTATCCAC AAAATTAAA TT

Act[m2-i100] CTCTATT TCCTAAATC AAAATTAAA TT
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Table S14: DNA sequences of top strands in the thresholds.

Name Sequence

Th[i1]-t CAACTTCCCACACTT

Th[i2]-t CATCTAACCAACTTA

Th[i3]-t CACCTAAACAATACT

Th[i4]-t CATTACATCACAATC

Th[i5]-t CAACCTTACATTATC

Th[i6]-t CAATCCATCATCTTA

Th[i7]-t CATCACTACATCCAC

Th[i8]-t CATCCCAACATACCT

Th[i9]-t CAATCTCCCAACCCA

Th[i10]-t CATTTCCACAACTTT

Th[i11]-t CATCTTTTCACCACT

Th[i12]-t CAATTACTCAAACTC

Th[i13]-t CACTATCACAACCTC

Th[i14]-t CACAACAACACACCC

Th[i15]-t CAATCATACATATCC

Th[i16]-t CACCCTTTCATACTA

Th[i17]-t CATCCACTCAATCCC

Th[i18]-t CATACTCACATAATC

Th[i19]-t CATACACCCACTTCT

Th[i20]-t CACCTTCTCATATCT

Th[i21]-t CATTATTTCAACCCT

Th[i22]-t CATTAATACACTTCC

Th[i23]-t CATTTACACACACAT

Th[i24]-t CATAATTCCATCTTC

Th[i25]-t CAACACTTCACTCCT

Th[i26]-t CATCTATCCACTATC

Th[i27]-t CACTCCTACAAATTA

Th[i28]-t CACTACCTCATACCC

Th[i29]-t CATACCTACACTCTA

Th[i30]-t CACTCACACACCTTC

Th[i31]-t CAACTACACATTCTA

Th[i32]-t CATATTCACAAACCA

Th[i33]-t CACACATTCAAAACT

Th[i34]-t CACTTTTCCACTTTA

Th[i35]-t CAAATACCCACCCAC

Th[i36]-t CACCACATCATTATT

Th[i37]-t CATCCCTTCAATATA

Th[i38]-t CAATTCATCAACAAC

Th[i39]-t CATAAACACATCCCT

Th[i40]-t CACATATACACAAAC

Th[i41]-t CATCCTATCACTTTC

Th[i42]-t CAAAACCACAATCAC

Th[i43]-t CATCATAACAACACC

Th[i44]-t CACAAATTCATTCAC

Th[i45]-t CATTATCCCATAACT

Th[i46]-t CAATATCTCACTCAT

Th[i47]-t CACCAATCCATTTCA

Th[i48]-t CATTTTAACATTCCC

Th[i49]-t CACCTCCTCAACACA

Th[i50]-t CATTCTTACACCAAC

Th[i51]-t CACATTCCCATTAAC

109



Name Sequence

Th[i52]-t CAACCATCCAAACTA

Th[i53]-t CAAACAACCATTTAC

Th[i54]-t CAATCCTCCAATACC

Th[i55]-t CATCACACCACCTAT

Th[i56]-t CAACCAAACATCACT

Th[i57]-t CATAACCTCAAATCT

Th[i58]-t CAATATTCCACATCA

Th[i59]-t CACTATACCAATAAC

Th[i60]-t CAAAATCCCAATCTA

Th[i61]-t CACTAAACCATACAT

Th[i62]-t CAACAACCCAAATCC

Th[i63]-t CAATAAAACACCCTA

Th[i64]-t CAAATCACCAAAACA

Th[i65]-t CATCTTATCAAACAC

Th[i66]-t CATACCACCATCCTC

Th[i67]-t CACAAACTCACCTCA

Th[i68]-t CAACCCACCAATTTT

Th[i69]-t CATTCACCCATATTA

Th[i70]-t CACCCAATCATAAAC

Th[i71]-t CACACCAACAACCAT

Th[i72]-t CACTCTAACACTTAT

Th[i73]-t CAACAATTCACCTAC

Th[i74]-t CACCCTACCACTCCC

Th[i75]-t CACACTTCCAATTAT

Th[i76]-t CACAATATCATCACC

Th[i77]-t CAAACTCTCATCATT

Th[i78]-t CAATTTCACACCACC

Th[i79]-t CAACTTACCATTCAT

Th[i80]-t CATCCATACAACTAT

Th[i81]-t CAACTCTACACATTC

Th[i82]-t CAAATCCTCATTTTC

Th[i83]-t CACCATTACAAACAT

Th[i84]-t CATATATTCAACTCC

Th[i85]-t CAATCACTCATTACA

Th[i86]-t CACCAACACAAAATA

Th[i87]-t CAAACCCACATATAT

Th[i88]-t CATCTCTCCATAAAT

Th[i89]-t CATATCAACATCTCA

Th[i90]-t CACATCCACACTACA

Th[i91]-t CATCAAACCACAACA

Th[i92]-t CAAACTTTCACACAC

Th[i93]-t CACCTACCCATCTAT

Th[i94]-t CACCTTTACAATTCC

Th[i95]-t CATTCCTTCACATAT

Th[i96]-t CACAACTCCACCATT

Th[i97]-t CAATACTCCATCAAT

Th[i98]-t CACTTATCCAACATT

Th[i99]-t CACATAATCACCCTT

Th[i100]-t CATACCCTCACTAAC
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Table S15: DNA sequences of bottom strands in the thresholds.

Name Sequence

Th[i1]-b AAAATTAAA AAGTGTGGGAAGTTG

Th[i2]-b AAAATTAAA TAAGTTGGTTAGATG

Th[i3]-b AAAATTAAA AGTATTGTTTAGGTG

Th[i4]-b AAAATTAAA GATTGTGATGTAATG

Th[i5]-b AAAATTAAA GATAATGTAAGGTTG

Th[i6]-b AAAATTAAA TAAGATGATGGATTG

Th[i7]-b AAAATTAAA GTGGATGTAGTGATG

Th[i8]-b AAAATTAAA AGGTATGTTGGGATG

Th[i9]-b AAAATTAAA TGGGTTGGGAGATTG

Th[i10]-b AAAATTAAA AAAGTTGTGGAAATG

Th[i11]-b AAAATTAAA AGTGGTGAAAAGATG

Th[i12]-b AAAATTAAA GAGTTTGAGTAATTG

Th[i13]-b AAAATTAAA GAGGTTGTGATAGTG

Th[i14]-b AAAATTAAA GGGTGTGTTGTTGTG

Th[i15]-b AAAATTAAA GGATATGTATGATTG

Th[i16]-b AAAATTAAA TAGTATGAAAGGGTG

Th[i17]-b AAAATTAAA GGGATTGAGTGGATG

Th[i18]-b AAAATTAAA GATTATGTGAGTATG

Th[i19]-b AAAATTAAA AGAAGTGGGTGTATG

Th[i20]-b AAAATTAAA AGATATGAGAAGGTG

Th[i21]-b AAAATTAAA AGGGTTGAAATAATG

Th[i22]-b AAAATTAAA GGAAGTGTATTAATG

Th[i23]-b AAAATTAAA ATGTGTGTGTAAATG

Th[i24]-b AAAATTAAA GAAGATGGAATTATG

Th[i25]-b AAAATTAAA AGGAGTGAAGTGTTG

Th[i26]-b AAAATTAAA GATAGTGGATAGATG

Th[i27]-b AAAATTAAA TAATTTGTAGGAGTG

Th[i28]-b AAAATTAAA GGGTATGAGGTAGTG

Th[i29]-b AAAATTAAA TAGAGTGTAGGTATG

Th[i30]-b AAAATTAAA GAAGGTGTGTGAGTG

Th[i31]-b AAAATTAAA TAGAATGTGTAGTTG

Th[i32]-b AAAATTAAA TGGTTTGTGAATATG

Th[i33]-b AAAATTAAA AGTTTTGAATGTGTG

Th[i34]-b AAAATTAAA TAAAGTGGAAAAGTG

Th[i35]-b AAAATTAAA GTGGGTGGGTATTTG

Th[i36]-b AAAATTAAA AATAATGATGTGGTG

Th[i37]-b AAAATTAAA TATATTGAAGGGATG

Th[i38]-b AAAATTAAA GTTGTTGATGAATTG

Th[i39]-b AAAATTAAA AGGGATGTGTTTATG

Th[i40]-b AAAATTAAA GTTTGTGTATATGTG

Th[i41]-b AAAATTAAA GAAAGTGATAGGATG

Th[i42]-b AAAATTAAA GTGATTGTGGTTTTG

Th[i43]-b AAAATTAAA GGTGTTGTTATGATG

Th[i44]-b AAAATTAAA GTGAATGAATTTGTG

Th[i45]-b AAAATTAAA AGTTATGGGATAATG

Th[i46]-b AAAATTAAA ATGAGTGAGATATTG

Th[i47]-b AAAATTAAA TGAAATGGATTGGTG

Th[i48]-b AAAATTAAA GGGAATGTTAAAATG

Th[i49]-b AAAATTAAA TGTGTTGAGGAGGTG

Th[i50]-b AAAATTAAA GTTGGTGTAAGAATG

Th[i51]-b AAAATTAAA GTTAATGGGAATGTG
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Name Sequence

Th[i52]-b AAAATTAAA TAGTTTGGATGGTTG

Th[i53]-b AAAATTAAA GTAAATGGTTGTTTG

Th[i54]-b AAAATTAAA GGTATTGGAGGATTG

Th[i55]-b AAAATTAAA ATAGGTGGTGTGATG

Th[i56]-b AAAATTAAA AGTGATGTTTGGTTG

Th[i57]-b AAAATTAAA AGATTTGAGGTTATG

Th[i58]-b AAAATTAAA TGATGTGGAATATTG

Th[i59]-b AAAATTAAA GTTATTGGTATAGTG

Th[i60]-b AAAATTAAA TAGATTGGGATTTTG

Th[i61]-b AAAATTAAA ATGTATGGTTTAGTG

Th[i62]-b AAAATTAAA GGATTTGGGTTGTTG

Th[i63]-b AAAATTAAA TAGGGTGTTTTATTG

Th[i64]-b AAAATTAAA TGTTTTGGTGATTTG

Th[i65]-b AAAATTAAA GTGTTTGATAAGATG

Th[i66]-b AAAATTAAA GAGGATGGTGGTATG

Th[i67]-b AAAATTAAA TGAGGTGAGTTTGTG

Th[i68]-b AAAATTAAA AAAATTGGTGGGTTG

Th[i69]-b AAAATTAAA TAATATGGGTGAATG

Th[i70]-b AAAATTAAA GTTTATGATTGGGTG

Th[i71]-b AAAATTAAA ATGGTTGTTGGTGTG

Th[i72]-b AAAATTAAA ATAAGTGTTAGAGTG

Th[i73]-b AAAATTAAA GTAGGTGAATTGTTG

Th[i74]-b AAAATTAAA GGGAGTGGTAGGGTG

Th[i75]-b AAAATTAAA ATAATTGGAAGTGTG

Th[i76]-b AAAATTAAA GGTGATGATATTGTG

Th[i77]-b AAAATTAAA AATGATGAGAGTTTG

Th[i78]-b AAAATTAAA GGTGGTGTGAAATTG

Th[i79]-b AAAATTAAA ATGAATGGTAAGTTG

Th[i80]-b AAAATTAAA ATAGTTGTATGGATG

Th[i81]-b AAAATTAAA GAATGTGTAGAGTTG

Th[i82]-b AAAATTAAA GAAAATGAGGATTTG

Th[i83]-b AAAATTAAA ATGTTTGTAATGGTG

Th[i84]-b AAAATTAAA GGAGTTGAATATATG

Th[i85]-b AAAATTAAA TGTAATGAGTGATTG

Th[i86]-b AAAATTAAA TATTTTGTGTTGGTG

Th[i87]-b AAAATTAAA ATATATGTGGGTTTG

Th[i88]-b AAAATTAAA ATTTATGGAGAGATG

Th[i89]-b AAAATTAAA TGAGATGTTGATATG

Th[i90]-b AAAATTAAA TGTAGTGTGGATGTG

Th[i91]-b AAAATTAAA TGTTGTGGTTTGATG

Th[i92]-b AAAATTAAA GTGTGTGAAAGTTTG

Th[i93]-b AAAATTAAA ATAGATGGGTAGGTG

Th[i94]-b AAAATTAAA GGAATTGTAAAGGTG

Th[i95]-b AAAATTAAA ATATGTGAAGGAATG

Th[i96]-b AAAATTAAA AATGGTGGAGTTGTG

Th[i97]-b AAAATTAAA ATTGATGGAGTATTG

Th[i98]-b AAAATTAAA AATGTTGGATAAGTG

Th[i99]-b AAAATTAAA AAGGGTGATTATGTG

Th[i100]-b AAAATTAAA GTTAGTGAGGGTATG
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Table S16: DNA sequences of weight fuels.

Name Sequence

XF[i1] CA TCT CAACTTCCCACACTT

XF[i2] CA TCT CATCTAACCAACTTA

XF[i3] CA TCT CACCTAAACAATACT

XF[i4] CA TCT CATTACATCACAATC

XF[i5] CA TCT CAACCTTACATTATC

XF[i6] CA TCT CAATCCATCATCTTA

XF[i7] CA TCT CATCACTACATCCAC

XF[i8] CA TCT CATCCCAACATACCT

XF[i9] CA TCT CAATCTCCCAACCCA

XF[i10] CA TCT CATTTCCACAACTTT

XF[i11] CA TCT CATCTTTTCACCACT

XF[i12] CA TCT CAATTACTCAAACTC

XF[i13] CA TCT CACTATCACAACCTC

XF[i14] CA TCT CACAACAACACACCC

XF[i15] CA TCT CAATCATACATATCC

XF[i16] CA TCT CACCCTTTCATACTA

XF[i17] CA TCT CATCCACTCAATCCC

XF[i18] CA TCT CATACTCACATAATC

XF[i19] CA TCT CATACACCCACTTCT

XF[i20] CA TCT CACCTTCTCATATCT

XF[i21] CA TCT CATTATTTCAACCCT

XF[i22] CA TCT CATTAATACACTTCC

XF[i23] CA TCT CATTTACACACACAT

XF[i24] CA TCT CATAATTCCATCTTC

XF[i25] CA TCT CAACACTTCACTCCT

XF[i26] CA TCT CATCTATCCACTATC

XF[i27] CA TCT CACTCCTACAAATTA

XF[i28] CA TCT CACTACCTCATACCC

XF[i29] CA TCT CATACCTACACTCTA

XF[i30] CA TCT CACTCACACACCTTC

XF[i31] CA TCT CAACTACACATTCTA

XF[i32] CA TCT CATATTCACAAACCA

XF[i33] CA TCT CACACATTCAAAACT

XF[i34] CA TCT CACTTTTCCACTTTA

XF[i35] CA TCT CAAATACCCACCCAC

XF[i36] CA TCT CACCACATCATTATT

XF[i37] CA TCT CATCCCTTCAATATA

XF[i38] CA TCT CAATTCATCAACAAC

XF[i39] CA TCT CATAAACACATCCCT

XF[i40] CA TCT CACATATACACAAAC

XF[i41] CA TCT CATCCTATCACTTTC

XF[i42] CA TCT CAAAACCACAATCAC

XF[i43] CA TCT CATCATAACAACACC

XF[i44] CA TCT CACAAATTCATTCAC

XF[i45] CA TCT CATTATCCCATAACT

XF[i46] CA TCT CAATATCTCACTCAT

XF[i47] CA TCT CACCAATCCATTTCA

XF[i48] CA TCT CATTTTAACATTCCC

XF[i49] CA TCT CACCTCCTCAACACA

XF[i50] CA TCT CATTCTTACACCAAC

XF[i51] CA TCT CACATTCCCATTAAC
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Name Sequence

XF[i52] CA TCT CAACCATCCAAACTA

XF[i53] CA TCT CAAACAACCATTTAC

XF[i54] CA TCT CAATCCTCCAATACC

XF[i55] CA TCT CATCACACCACCTAT

XF[i56] CA TCT CAACCAAACATCACT

XF[i57] CA TCT CATAACCTCAAATCT

XF[i58] CA TCT CAATATTCCACATCA

XF[i59] CA TCT CACTATACCAATAAC

XF[i60] CA TCT CAAAATCCCAATCTA

XF[i61] CA TCT CACTAAACCATACAT

XF[i62] CA TCT CAACAACCCAAATCC

XF[i63] CA TCT CAATAAAACACCCTA

XF[i64] CA TCT CAAATCACCAAAACA

XF[i65] CA TCT CATCTTATCAAACAC

XF[i66] CA TCT CATACCACCATCCTC

XF[i67] CA TCT CACAAACTCACCTCA

XF[i68] CA TCT CAACCCACCAATTTT

XF[i69] CA TCT CATTCACCCATATTA

XF[i70] CA TCT CACCCAATCATAAAC

XF[i71] CA TCT CACACCAACAACCAT

XF[i72] CA TCT CACTCTAACACTTAT

XF[i73] CA TCT CAACAATTCACCTAC

XF[i74] CA TCT CACCCTACCACTCCC

XF[i75] CA TCT CACACTTCCAATTAT

XF[i76] CA TCT CACAATATCATCACC

XF[i77] CA TCT CAAACTCTCATCATT

XF[i78] CA TCT CAATTTCACACCACC

XF[i79] CA TCT CAACTTACCATTCAT

XF[i80] CA TCT CATCCATACAACTAT

XF[i81] CA TCT CAACTCTACACATTC

XF[i82] CA TCT CAAATCCTCATTTTC

XF[i83] CA TCT CACCATTACAAACAT

XF[i84] CA TCT CATATATTCAACTCC

XF[i85] CA TCT CAATCACTCATTACA

XF[i86] CA TCT CACCAACACAAAATA

XF[i87] CA TCT CAAACCCACATATAT

XF[i88] CA TCT CATCTCTCCATAAAT

XF[i89] CA TCT CATATCAACATCTCA

XF[i90] CA TCT CACATCCACACTACA

XF[i91] CA TCT CATCAAACCACAACA

XF[i92] CA TCT CAAACTTTCACACAC

XF[i93] CA TCT CACCTACCCATCTAT

XF[i94] CA TCT CACCTTTACAATTCC

XF[i95] CA TCT CATTCCTTCACATAT

XF[i96] CA TCT CACAACTCCACCATT

XF[i97] CA TCT CAATACTCCATCAAT

XF[i98] CA TCT CACTTATCCAACATT

XF[i99] CA TCT CACATAATCACCCTT

XF[i100] CA TCT CATACCCTCACTAAC
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Table S17: DNA sequences of label and inhibitor strands.

Name Sequence

L1 GAAGGTT GG AAAATTAAA

L2 GTAGTGA GT AAAATTAAA

Inh1 TTTAATTTT CC AACCTTC

Inh2 TTTAATTTT AC TCACTAC

Table S18: DNA sequences of strands in the summation, annihilation, and signal restoration
layers.

Name Sequence

S1 CACTTCATAAATCCA TCT CACACTATAATTCCA

S2 CAACATATCAATTCA TCT CACACAACAACCACA

SG1-b TG AGA TGGAATTATAGTGTG AGA TG

SG2-b TG AGA TGTGGTTGTTGTGTG AGA TG

Anh12-t TG TG AGA TGAATTGATATGTTG CACTTCATAAATCCA

Anh12-b TG TG AGA TGGATTTATGAAGTG CAACATATCAATTCA

Y1 CATAACACAATCACA TCT CACTTCATAAATCCA

Y2 CAAATCTTCATCCCA TCT CAACATATCAATTCA

RG1-b TG AGA TGGATTTATGAAGTG AGA TG

RG1-b TG AGA TGAATTGATATGTTG AGA TG

YF1 CA TCT CACTTCATAAATCCA

YF2 CA TCT CAACATATCAATTCA

Table S19: DNA sequences of fluorophore and quencher modified strands.

Name Sequence

Rep1-t-RQ /5IAbRQ/ CATAACACAATCACA

Rep1-b-ATTO590 TG AGA TGTGATTGTGTTATG /3ATTO590N/

Rep2-t-FQ /5IABkFQ/ CAAATCTTCATCCCA

Rep2-b-ATTO488 TG AGA TGGGATGAAGATTTG /3ATTO488N/

RepP1-t-RQ /5IAbRQ/ CACACTATAATTCCA

RepP1-b-ATTO590 TG AGA TGGAATTATAGTGTG /3ATTO590N/

RepP2-t-RQ /5IAbRQ/ CACACAACAACCACA

RepP2-b-ATTO647 TG AGA TGTGGTTGTTGTGTG /3ATTO647NN/

X[i1]-RQ CAACTTCCCACACTT TTTAATTTT /3IAbRQSp/

X[i3]-FQ CACCTAAACAATACT TTTAATTTT /3IABkFQ/

X[i5]-RQ CAACCTTACATTATC TTTAATTTT /3IAbRQSp/

X[i7]-RQ CATCACTACATCCAC TTTAATTTT /3IAbRQSp/

inhAct[m1-i1]-b-ATTO550 /5ATTO550N/ GG AAAATTAAA AAGTGTGGGAAGTTG TCTTTCA TTATCCTCC AAAATTAAA TT

inhAct[m1-i3]-b-ATTO488 /5ATTO488N/ GG AAAATTAAA AGTATTGTTTAGGTG TCTTTCA ACACCATCC AAAATTAAA TT

inhAct[m1-i5]-b-ATTO590 /5ATTO590N/ GG AAAATTAAA GATAATGTAAGGTTG TCTTTCA CCTTATTAC AAAATTAAA TT

inhAct[m1-i7]-b-ATTO647 /5ATTO647NN/ GG AAAATTAAA GTGGATGTAGTGATG TCTTTCA ATCTCTCTC AAAATTAAA TT

inhAct[m2-i1]-b-ATTO647 /5ATTO647NN/ GT AAAATTAAA AAGTGTGGGAAGTTG CTCTATT TTATCCTCC AAAATTAAA TT

inhAct[m2-i3]-b-ATTO488 /5ATTO488N/ GT AAAATTAAA AGTATTGTTTAGGTG CTCTATT ACACCATCC AAAATTAAA TT

inhAct[m2-i5]-b-ATTO550 /5ATTO550N/ GT AAAATTAAA GATAATGTAAGGTTG CTCTATT CCTTATTAC AAAATTAAA TT

inhAct[m2-i7]-b-ATTO590 /5ATTO590N/ GT AAAATTAAA GTGGATGTAGTGATG CTCTATT ATCTCTCTC AAAATTAAA TT
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